Lazy groupoids
A binary operationf(x, y) is said to be lazy if every operation that can be obtained fromfby composition is equivalent tof(x, y),f(x, x) orx. We describe lazy operations by identities (i.e., we determine all varieties of lazy groupoids), and we also characterize lazy groupoids up to isomorphism.
Elmentve itt :
Szerzők: | |
---|---|
Dokumentumtípus: | Cikk |
Megjelent: |
2021
|
Sorozat: | SEMIGROUP FORUM
102 No. 1 |
Tárgyszavak: | |
doi: | 10.1007/s00233-020-10128-z |
mtmt: | 31736106 |
Online Access: | http://publicatio.bibl.u-szeged.hu/28139 |
LEADER | 01111nab a2200253 i 4500 | ||
---|---|---|---|
001 | publ28139 | ||
005 | 20230830082027.0 | ||
008 | 230830s2021 hu o 0|| Angol d | ||
022 | |a 0037-1912 | ||
024 | 7 | |a 10.1007/s00233-020-10128-z |2 doi | |
024 | 7 | |a 31736106 |2 mtmt | |
040 | |a SZTE Publicatio Repozitórium |b hun | ||
041 | |a Angol | ||
100 | 1 | |a Kaprinai Balázs | |
245 | 1 | 0 | |a Lazy groupoids |h [elektronikus dokumentum] / |c Kaprinai Balázs |
260 | |c 2021 | ||
300 | |a 160-183 | ||
490 | 0 | |a SEMIGROUP FORUM |v 102 No. 1 | |
520 | 3 | |a A binary operationf(x, y) is said to be lazy if every operation that can be obtained fromfby composition is equivalent tof(x, y),f(x, x) orx. We describe lazy operations by identities (i.e., we determine all varieties of lazy groupoids), and we also characterize lazy groupoids up to isomorphism. | |
650 | 4 | |a Matematika | |
700 | 0 | 1 | |a Machida Hajime |e aut |
700 | 0 | 1 | |a Waldhauser Tamás |e aut |
856 | 4 | 0 | |u http://publicatio.bibl.u-szeged.hu/28139/2/31736106.pdf |z Dokumentum-elérés |
856 | 4 | 0 | |u http://publicatio.bibl.u-szeged.hu/28139/1/2020_2.pdf |z Dokumentum-elérés |