Experimental and numerical investigation of a density-driven instability during a horizontal miscible displacement

We performed an experimental and numerical investigation of a convective buoyancy-driven instability that arises during the injection of a denser miscible fluid into a less dense one in a rectilinear geometry. We visualized the instability using a shadowgraph technique, and we obtained quantitative...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Yorgos Stergiou
Papp Paszkál
Horváth Dezső
Tóth Ágota
Eckert Kerstin
Schwarzenberger Karin
Dokumentumtípus: Cikk
Megjelent: 2023
Sorozat:PHYSICS OF FLUIDS 35 No. 6
Tárgyszavak:
doi:10.1063/5.0151757

mtmt:34084569
Online Access:http://publicatio.bibl.u-szeged.hu/28028
LEADER 01805nab a2200277 i 4500
001 publ28028
005 20230803091408.0
008 230803s2023 hu o 0|| Angol d
022 |a 1070-6631 
024 7 |a 10.1063/5.0151757  |2 doi 
024 7 |a 34084569  |2 mtmt 
040 |a SZTE Publicatio Repozitórium  |b hun 
041 |a Angol 
100 1 |a Yorgos Stergiou 
245 1 0 |a Experimental and numerical investigation of a density-driven instability during a horizontal miscible displacement  |h [elektronikus dokumentum] /  |c  Yorgos Stergiou 
260 |c 2023 
300 |a 12 
490 0 |a PHYSICS OF FLUIDS  |v 35 No. 6 
520 3 |a We performed an experimental and numerical investigation of a convective buoyancy-driven instability that arises during the injection of a denser miscible fluid into a less dense one in a rectilinear geometry. We visualized the instability using a shadowgraph technique, and we obtained quantitative information using micro-Particle Image Velocimetry. Numerical simulations provided further insights into the three-dimensional (3D) velocity field. We have shown that the instability only occurs above a certain Peclet number, Pe, depending on the Rayleigh, Ra, and Schmidt, Sc, numbers. We suggest scalings of the critical time, T-C, and dimensionless wavelength, ?/h, of the instability, both of which increase with increasing Pe and Ra. Finally, we investigated the interactions of the instability vortices with each other and the geometry boundaries. 
650 4 |a Kémiai tudományok 
700 0 1 |a Papp Paszkál  |e aut 
700 0 1 |a Horváth Dezső  |e aut 
700 0 1 |a Tóth Ágota  |e aut 
700 0 1 |a Eckert Kerstin  |e aut 
700 0 1 |a Schwarzenberger Karin  |e aut 
856 4 0 |u http://publicatio.bibl.u-szeged.hu/28028/1/POF23-AR-01717_AcceptedManuscript.pdf  |z Dokumentum-elérés