Geometrical and physical interpretation of the Levi-Civita spacetime in terms of the Komar mass density
We revisit the interpretation of the cylindrically symmetric, static vacuum Levi-Civita metric, known in either Weyl, Einstein–Rosen, or Kasner-like coordinates. The Komar mass density of the infinite axis source arises through a suitable compactification procedure. The Komar mass density \mu _{K} μ...
Elmentve itt :
Szerzők: | |
---|---|
Dokumentumtípus: | Cikk |
Megjelent: |
2023
|
Sorozat: | EUROPEAN PHYSICAL JOURNAL PLUS
138 No. 5 |
Tárgyszavak: | |
doi: | 10.1140/epjp/s13360-023-04027-9 |
mtmt: | 33859928 |
Online Access: | http://publicatio.bibl.u-szeged.hu/27276 |
LEADER | 02634nab a2200229 i 4500 | ||
---|---|---|---|
001 | publ27276 | ||
005 | 20230524102754.0 | ||
008 | 230524s2023 hu o 0|| Angol d | ||
022 | |a 2190-5444 | ||
024 | 7 | |a 10.1140/epjp/s13360-023-04027-9 |2 doi | |
024 | 7 | |a 33859928 |2 mtmt | |
040 | |a SZTE Publicatio Repozitórium |b hun | ||
041 | |a Angol | ||
100 | 1 | |a Racskó Bence | |
245 | 1 | 0 | |a Geometrical and physical interpretation of the Levi-Civita spacetime in terms of the Komar mass density |h [elektronikus dokumentum] / |c Racskó Bence |
260 | |c 2023 | ||
300 | |a 19 | ||
490 | 0 | |a EUROPEAN PHYSICAL JOURNAL PLUS |v 138 No. 5 | |
520 | 3 | |a We revisit the interpretation of the cylindrically symmetric, static vacuum Levi-Civita metric, known in either Weyl, Einstein–Rosen, or Kasner-like coordinates. The Komar mass density of the infinite axis source arises through a suitable compactification procedure. The Komar mass density \mu _{K} μ K calculated in Einstein–Rosen coordinates, when employed as the metric parameter, leads to a number of advantages. It eliminates double coverages of the parameter space, vanishes in flat spacetime and when small, it corresponds to the mass density of an infinite string. After a comprehensive analysis of the local and global geometry, we proceed with the physical interpretation of the Levi-Civita spacetime. First we show that the Newtonian gravitational force is attractive and its magnitude increases monotonically with all positive \mu _{K} μ K , asymptoting to the inverse of the proper distance in the radial direction. Second, we reveal that the tidal force between nearby geodesics (hence gravity in the Einsteinian sense) attains a maximum at \mu _{K}=1/2 μ K = 1 / 2 and then decreases asymptotically to zero. Hence, from a physical point of view the Komar mass density of the Levi-Civita spacetime encompasses two contributions: Newtonian gravity and acceleration effects. An increase in \mu _{K} μ K strengthens Newtonian gravity but also drags the field lines increasingly parallel, eventually transforming Newtonian gravity through the equivalence principle into a pure acceleration field and the Levi-Civita spacetime into a flat Rindler-like spacetime. In a geometric picture the increase of \mu _{K} μ K from zero to \infty ∞ deforms the planar sections of the spacetime into ever deepening funnels, eventually degenerating into cylindrical topology in an appropriately chosen embedding. | |
650 | 4 | |a Fizikai tudományok | |
700 | 0 | 1 | |a Gergely László Á. |e aut |
856 | 4 | 0 | |u http://publicatio.bibl.u-szeged.hu/27276/1/s13360-023-04027-9.pdfpdfbutton |z Dokumentum-elérés |