Environmental properties of cells improve machine learning-based phenotype recognition accuracy

To answer major questions of cell biology, it is often essential to understand the complex phenotypic composition of cellular systems precisely. Modern automated microscopes produce vast amounts of images routinely, making manual analysis nearly impossible. Due to their efficiency, machine learning-...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Tóth Tímea
Balassa Tamás
Bara Norbert
Kovács Ferenc
Kriston András
Molnár Csaba
Haracska Lajos
Sükösd Farkas
Horváth Péter
Dokumentumtípus: Cikk
Megjelent: 2018
Sorozat:SCIENTIFIC REPORTS 8 No. 1
Tárgyszavak:
doi:10.1038/s41598-018-28482-y

mtmt:3396221
Online Access:http://publicatio.bibl.u-szeged.hu/26488
LEADER 02483nab a2200325 i 4500
001 publ26488
005 20230224080711.0
008 230214s2018 hu o 0|| Angol d
022 |a 2045-2322 
024 7 |a 10.1038/s41598-018-28482-y  |2 doi 
024 7 |a 3396221  |2 mtmt 
040 |a SZTE Publicatio Repozitórium  |b hun 
041 |a Angol 
100 1 |a Tóth Tímea 
245 1 0 |a Environmental properties of cells improve machine learning-based phenotype recognition accuracy  |h [elektronikus dokumentum] /  |c  Tóth Tímea 
260 |c 2018 
300 |a 9 
490 0 |a SCIENTIFIC REPORTS  |v 8 No. 1 
520 3 |a To answer major questions of cell biology, it is often essential to understand the complex phenotypic composition of cellular systems precisely. Modern automated microscopes produce vast amounts of images routinely, making manual analysis nearly impossible. Due to their efficiency, machine learning-based analysis software have become essential tools to perform single-cell-level phenotypic analysis of large imaging datasets. However, an important limitation of such methods is that they do not use the information gained from the cellular micro- and macroenvironment: the algorithmic decision is based solely on the local properties of the cell of interest. Here, we present how various features from the surrounding environment contribute to identifying a cell and how such additional information can improve single-cell-level phenotypic image analysis. The proposed methodology was tested for different sizes of Euclidean and nearest neighbour-based cellular environments both on tissue sections and cell cultures. Our experimental data verify that the surrounding area of a cell largely determines its entity. This effect was found to be especially strong for established tissues, while it was somewhat weaker in the case of cell cultures. Our analysis shows that combining local cellular features with the properties of the cell's neighbourhood significantly improves the accuracy of machine learning-based phenotyping. 
650 4 |a Biológiai tudományok 
650 4 |a Általános orvostudomány 
700 0 1 |a Balassa Tamás  |e aut 
700 0 1 |a Bara Norbert  |e aut 
700 0 1 |a Kovács Ferenc  |e aut 
700 0 1 |a Kriston András  |e aut 
700 0 1 |a Molnár Csaba  |e aut 
700 0 1 |a Haracska Lajos  |e aut 
700 0 1 |a Sükösd Farkas  |e aut 
700 0 1 |a Horváth Péter  |e aut 
856 4 0 |u http://publicatio.bibl.u-szeged.hu/26488/1/3396221.pdf  |z Dokumentum-elérés