Discovering the Hidden Community Structure of Public Transportation Networks

Advances in public transit modeling and smart card technologies can reveal detailedcontact patterns of passengers. A natural way to represent such contact patterns is inthe form of networks. In this paper we utilize known contact patterns from a publictransit assignment model in a major metropolitan...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Hajdu László
Bóta András
Krész Miklós
Khani Alireza
Gardner Lauren M.
Dokumentumtípus: Cikk
Megjelent: 2020
Sorozat:NETWORKS AND SPATIAL ECONOMICS: A JOURNAL OF INFRASTRUCTURE MODELING AND COMPUTATION 20 No. 1
Tárgyszavak:
doi:10.1007/s11067-019-09476-3

mtmt:30925919
Online Access:http://publicatio.bibl.u-szeged.hu/26076
LEADER 02158nab a2200265 i 4500
001 publ26076
005 20230110142309.0
008 230110s2020 hu o 0|| Angol d
022 |a 1566-113X 
024 7 |a 10.1007/s11067-019-09476-3  |2 doi 
024 7 |a 30925919  |2 mtmt 
040 |a SZTE Publicatio Repozitórium  |b hun 
041 |a Angol 
100 1 |a Hajdu László 
245 1 0 |a Discovering the Hidden Community Structure of Public Transportation Networks  |h [elektronikus dokumentum] /  |c  Hajdu László 
260 |c 2020 
300 |a 209-231 
490 0 |a NETWORKS AND SPATIAL ECONOMICS: A JOURNAL OF INFRASTRUCTURE MODELING AND COMPUTATION  |v 20 No. 1 
520 3 |a Advances in public transit modeling and smart card technologies can reveal detailedcontact patterns of passengers. A natural way to represent such contact patterns is inthe form of networks. In this paper we utilize known contact patterns from a publictransit assignment model in a major metropolitan city, and propose the developmentof two novel network structures, each of which elucidate certain aspects of passengertravel behavior. We first propose the development of a transfer network, which canreveal passenger groups that travel together on a given day. Second, we propose thedevelopment of a community network, which is derived from the transfer network,and captures the similarity of travel patterns among passengers. We then explorethe application of each of these network structures to identify the most frequentlyused travel paths, i.e., routes and transfers, in the public transit system, and modelepidemic spreading risk among passengers of a public transit network, respectively.In the latter our conclusions reinforce previous observations, that routes crossing orconnecting to the city center in the morning and afternoon peak hours are the most“dangerous” during an outbreak. 
650 4 |a Számítás- és információtudomány 
700 0 1 |a Bóta András  |e aut 
700 0 1 |a Krész Miklós  |e aut 
700 0 1 |a Khani Alireza  |e aut 
700 0 1 |a Gardner Lauren M.  |e aut 
856 4 0 |u http://publicatio.bibl.u-szeged.hu/26076/1/NETS_paper.pdf  |z Dokumentum-elérés