Critical points of polynomials
This paper is devoted to the problem of where the critical points of a polynomial are relative to their zeros. Classical and new developments are surveyed along with illustrative examples. The paper finishes with a short proof of the sector theorem of Sendov and Sendov.
Elmentve itt :
Szerző: | |
---|---|
Dokumentumtípus: | Cikk |
Megjelent: |
2021
|
Sorozat: | ACTA MATHEMATICA HUNGARICA
164 No. 2 |
Tárgyszavak: | |
doi: | 10.1007/s10474-021-01133-x |
mtmt: | 32371992 |
Online Access: | http://publicatio.bibl.u-szeged.hu/23761 |
LEADER | 00931nab a2200217 i 4500 | ||
---|---|---|---|
001 | publ23761 | ||
005 | 20220301084353.0 | ||
008 | 220301s2021 hu o 0|| Angol d | ||
022 | |a 0236-5294 | ||
024 | 7 | |a 10.1007/s10474-021-01133-x |2 doi | |
024 | 7 | |a 32371992 |2 mtmt | |
040 | |a SZTE Publicatio Repozitórium |b hun | ||
041 | |a Angol | ||
100 | 1 | |a Totik Vilmos | |
245 | 1 | 0 | |a Critical points of polynomials |h [elektronikus dokumentum] / |c Totik Vilmos |
260 | |c 2021 | ||
300 | |a 499-517 | ||
490 | 0 | |a ACTA MATHEMATICA HUNGARICA |v 164 No. 2 | |
520 | 3 | |a This paper is devoted to the problem of where the critical points of a polynomial are relative to their zeros. Classical and new developments are surveyed along with illustrative examples. The paper finishes with a short proof of the sector theorem of Sendov and Sendov. | |
650 | 4 | |a Matematika | |
856 | 4 | 0 | |u http://publicatio.bibl.u-szeged.hu/23761/1/GL.pdf |z Dokumentum-elérés |