Dynamics of proton transfer from ArH+ to CO

The reaction of ArH+ with CO is a fast proton transfer reaction that can form two different isomers, HCO+ and HOC+. It has been investigated in a crossed beam experiment and with direct dynamics simulations at collision energies ranging from 0.4 to 2.4 eV. Images of the differential cross sections r...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Bastian Björn
Carrascosa Eduardo
Kaiser Alexander
Meyer Jennifer
Michaelsen Tim
Czakó Gábor
Hase William L.
Wester Roland
Dokumentumtípus: Cikk
Megjelent: 2019
Sorozat:INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 438
doi:10.1016/j.ijms.2018.12.004

mtmt:30542632
Online Access:http://publicatio.bibl.u-szeged.hu/17908
LEADER 02047nab a2200289 i 4500
001 publ17908
005 20200116082854.0
008 200116s2019 hu o 0|| zxx d
022 |a 1387-3806 
024 7 |a 10.1016/j.ijms.2018.12.004  |2 doi 
024 7 |a 30542632  |2 mtmt 
040 |a SZTE Publicatio Repozitórium  |b hun 
041 |a zxx 
100 1 |a Bastian Björn 
245 1 0 |a Dynamics of proton transfer from ArH+ to CO  |h [elektronikus dokumentum] /  |c  Bastian Björn 
260 |c 2019 
300 |a 175-185 
490 0 |a INTERNATIONAL JOURNAL OF MASS SPECTROMETRY  |v 438 
520 3 |a The reaction of ArH+ with CO is a fast proton transfer reaction that can form two different isomers, HCO+ and HOC+. It has been investigated in a crossed beam experiment and with direct dynamics simulations at collision energies ranging from 0.4 to 2.4 eV. Images of the differential cross sections reveal dominant forward scattering, which is evidence for direct dynamics. The measured product internal energies are primarily determined by the reaction enthalpy and only at large scattering angles depend noticeably on the collision energy. The computational results agree well with the measured internal energy and scattering angle distributions and with the previously measured total rate constant. The direct reaction dynamics with dominant forward scattering are well reproduced by the almost step like opacity functions. The HCO+/HOC+ branching is found to be close to 2:1 in the simulations at 0.83 eV and 2.37 eV collision energy. A mode-specific vibrational analysis provides further insight into the isomer specific distribution of the product internal excitation. (C) 2018 Elsevier B.V. All rights reserved. 
700 0 1 |a Carrascosa Eduardo  |e aut 
700 0 1 |a Kaiser Alexander  |e aut 
700 0 1 |a Meyer Jennifer  |e aut 
700 0 1 |a Michaelsen Tim  |e aut 
700 0 1 |a Czakó Gábor  |e aut 
700 0 1 |a Hase William L.  |e aut 
700 0 1 |a Wester Roland  |e aut 
856 4 0 |u http://publicatio.bibl.u-szeged.hu/17908/1/IJMS_438_175_2019.pdf  |z Dokumentum-elérés