Large Sets of Lattices without Order Embeddings
Let I and μ be an infinite index set and a cardinal, respectively, such that |I| ≤ μ and, starting from ℵ0, μ can be constructed in countably many steps by passing from a cardinal λ to 2λ at successor ordinals and forming suprema at limit ordinals. We prove that there exists a system X = {Li: i ∈ I}...
Elmentve itt :
Szerző: | Czédli Gábor |
---|---|
Dokumentumtípus: | Cikk |
Megjelent: |
2016
|
Sorozat: | COMMUNICATIONS IN ALGEBRA
44 No. 2 |
doi: | 10.1080/00927872.2014.967352 |
mtmt: | 3014329 |
Online Access: | http://publicatio.bibl.u-szeged.hu/14544 |
Hasonló tételek
-
The ordered set of principal congruences of a countable lattice
Szerző: Czédli Gábor
Megjelent: (2016) -
Four-generated large equivalence lattices
Szerző: Czédli Gábor
Megjelent: (1996) -
An independence theorem for ordered sets of principal congruences and automorphism groups of bounded lattices
Szerző: Czédli Gábor
Megjelent: (2016) -
Representing an isotone map between two bounded ordered sets by principal lattice congruences
Szerző: Czédli Gábor
Megjelent: (2018) -
Symmetric embeddings of free lattices into each other
Szerző: Czédli Gábor, et al.
Megjelent: (2019)