Large Sets of Lattices without Order Embeddings

Let I and μ be an infinite index set and a cardinal, respectively, such that |I| ≤ μ and, starting from ℵ0, μ can be constructed in countably many steps by passing from a cardinal λ to 2λ at successor ordinals and forming suprema at limit ordinals. We prove that there exists a system X = {Li: i ∈ I}...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerző: Czédli Gábor
Dokumentumtípus: Cikk
Megjelent: 2016
Sorozat:COMMUNICATIONS IN ALGEBRA 44 No. 2
doi:10.1080/00927872.2014.967352

mtmt:3014329
Online Access:http://publicatio.bibl.u-szeged.hu/14544

Hasonló tételek