Four-generated quasiorder lattices and their atoms in a four-generated sublattice

Quasiorders, also known as preorders, on a set A form a lattice Quo(A). We prove that if A is a finite set consisting of 2, 3, 5, 7, 9, or more than 10 elements, then Quo(A) is four-generated but not three-generated. Also, if A is countably infinite, then a four-generated sublattice contains all ato...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerző: Czédli Gábor
Dokumentumtípus: Cikk
Megjelent: 2017
Sorozat:COMMUNICATIONS IN ALGEBRA 45 No. 9
doi:10.1080/00927872.2016.1257710

mtmt:3187412
Online Access:http://publicatio.bibl.u-szeged.hu/14541

Hasonló tételek