Four-generated quasiorder lattices and their atoms in a four-generated sublattice
Quasiorders, also known as preorders, on a set A form a lattice Quo(A). We prove that if A is a finite set consisting of 2, 3, 5, 7, 9, or more than 10 elements, then Quo(A) is four-generated but not three-generated. Also, if A is countably infinite, then a four-generated sublattice contains all ato...
Elmentve itt :
Szerző: | Czédli Gábor |
---|---|
Dokumentumtípus: | Cikk |
Megjelent: |
2017
|
Sorozat: | COMMUNICATIONS IN ALGEBRA
45 No. 9 |
doi: | 10.1080/00927872.2016.1257710 |
mtmt: | 3187412 |
Online Access: | http://publicatio.bibl.u-szeged.hu/14541 |
Hasonló tételek
-
Four-generated large equivalence lattices
Szerző: Czédli Gábor
Megjelent: (1996) -
(1 + 1 + 2)-generated lattices of quasiorders
Szerző: Ahmed Delbrin, et al.
Megjelent: (2021) -
Four-element generating sets of partition lattices and their direct products
Szerző: Czédli Gábor, et al.
Megjelent: (2020) -
On the number of atoms in three-generated lattices
Szerző: Czédli Gábor
Megjelent: (2021) -
Atom-generated planar lattices
Szerző: Grätzer G.
Megjelent: (2020)