Drug repurposing by simulating flow through protein-protein interaction networks

As drug development is extremely expensive, the identification of novel indications for in-market drugs is financially attractive. Multiple algorithms are used to support such drug repurposing, but highly reliable methods combining simulation of intracellular networks and machine learning are curre...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Manczinger Máté
Bodnár V.
Papp B.
Bolla Beáta Szilvia
Szabó Kornélia Ágnes
Balázs Boglárka
Csányi Erzsébet
Szél Edit
Erős Gábor
Kemény Lajos
Dokumentumtípus: Cikk
Megjelent: Szakszervezetek Elméleti Kutatóintézete 2018
Sorozat:CLINICAL PHARMACOLOGY & THERAPEUTICS 103 No. 3
doi:10.1002/cpt.769

mtmt:3244345
Online Access:http://publicatio.bibl.u-szeged.hu/12948
LEADER 02269nab a2200313 i 4500
001 publ12948
005 20200116161355.0
008 180213s2018 hu o 0|| zxx d
022 |a 0009-9236 
024 7 |a 10.1002/cpt.769  |2 doi 
024 7 |a 3244345  |2 mtmt 
040 |a SZTE Publicatio Repozitórium  |b hun 
041 |a zxx 
100 1 |a Manczinger Máté 
245 1 0 |a Drug repurposing by simulating flow through protein-protein interaction networks  |h [elektronikus dokumentum] /  |c  Manczinger Máté 
260 |a Szakszervezetek Elméleti Kutatóintézete  |c 2018 
300 |a 511-520 
490 0 |a CLINICAL PHARMACOLOGY & THERAPEUTICS  |v 103 No. 3 
520 3 |a As drug development is extremely expensive, the identification of novel indications for in-market drugs is financially attractive. Multiple algorithms are used to support such drug repurposing, but highly reliable methods combining simulation of intracellular networks and machine learning are currently not available. We developed an algorithm that simulates drug effects on the flow of information through protein-protein interaction networks, and uses Support Vector Machine to identify potentially effective drugs in our model disease, psoriasis. Using this method, we screened about 1500 marketed and investigational substances, identified fifty-one drugs that were potentially effective and selected three of them for experimental confirmation. All drugs inhibited TNF-induced NFkappaB activity in vitro, suggesting they might be effective for treating psoriasis in humans. Additionally, these drugs significantly inhibited imiquimod-induced ear thickening and inflammation in the mouse model of the disease. All results suggest high prediction performance for the algorithm. This article is protected by copyright. All rights reserved. 
700 0 1 |a Bodnár V.  |e aut 
700 0 1 |a Papp B.  |e aut 
700 0 1 |a Bolla Beáta Szilvia  |e aut 
700 0 1 |a Szabó Kornélia Ágnes  |e aut 
700 0 1 |a Balázs Boglárka  |e aut 
700 0 1 |a Csányi Erzsébet  |e aut 
700 0 1 |a Szél Edit  |e aut 
700 0 1 |a Erős Gábor  |e aut 
700 0 1 |a Kemény Lajos  |e aut 
856 4 0 |u http://publicatio.bibl.u-szeged.hu/12948/1/3244345_Manczinger_et_al_2018_Clinical_Pharmacology__Therapeutics_u.pdf  |z Dokumentum-elérés