Mitochondria-meditated pathways of organ failure upon inflammation

Liver failure induced by systemic inflammatory response (SIRS) is often associated with mitochondrial dysfunction but the mechanism linking SIRS and mitochondria-mediated liver failure is still a matter of discussion. Current hypotheses suggest that causative events could be a drop in ATP synthesis,...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Kozlov Andrey V.
Lancaster Jack J. Jr
Mészáros András
Weidinger Adelheid
Dokumentumtípus: Cikk
Megjelent: Elsevier 2017
Sorozat:REDOX BIOLOGY 13
doi:10.1016/j.redox.2017.05.017

mtmt:3289776
Online Access:http://publicatio.bibl.u-szeged.hu/12288
LEADER 02887nab a2200229 i 4500
001 publ12288
005 20200303151557.0
008 171115s2017 hu o 0|| zxx d
024 7 |a 10.1016/j.redox.2017.05.017  |2 doi 
024 7 |a 3289776  |2 mtmt 
040 |a SZTE Publicatio Repozitórium  |b hun 
041 |a zxx 
100 1 |a Kozlov Andrey V. 
245 1 0 |a Mitochondria-meditated pathways of organ failure upon inflammation  |h [elektronikus dokumentum] /  |c  Kozlov Andrey V. 
260 |a Elsevier  |c 2017 
300 |a 170-181 
490 0 |a REDOX BIOLOGY  |v 13 
520 3 |a Liver failure induced by systemic inflammatory response (SIRS) is often associated with mitochondrial dysfunction but the mechanism linking SIRS and mitochondria-mediated liver failure is still a matter of discussion. Current hypotheses suggest that causative events could be a drop in ATP synthesis, opening of mitochondrial permeability transition pore, specific changes in mitochondrial morphology, impaired Ca2+ uptake, generation of mitochondrial reactive oxygen species (mtROS), turnover of mitochondria and imbalance in electron supply to the respiratory chain. The aim of this review is to critically analyze existing hypotheses, in order to highlight the most promising research lines helping to prevent liver failure induced by SIRS. Evaluation of the literature shows that there is no consistent support that impaired Ca2+ metabolism, electron transport chain function and ultrastructure of mitochondria substantially contribute to liver failure. Moreover, our analysis suggests that the drop in ATP levels has protective rather than a deleterious character. Recent data suggest that the most critical mitochondrial event occurring upon SIRS is the release of mtROS in cytoplasm, which can activate two specific intracellular signaling cascades. The first is the mtROS-mediated activation of NADPH-oxidase in liver macrophages and endothelial cells; the second is the acceleration of the expression of inflammatory genes in hepatocytes. The signaling action of mtROS is strictly controlled in mitochondria at three points, (i) at the site of ROS generation at complex I, (ii) the site of mtROS release in cytoplasm via permeability transition pore, and (iii) interaction with specific kinases in cytoplasm. The systems controlling mtROS-signaling include pro- and anti-inflammatory mediators, nitric oxide, Ca2+ and NADPH-oxidase. Analysis of the literature suggests that further research should be focused on the impact of mtROS on organ failure induced by inflammation and simultaneously providing a new theoretical basis for a targeted therapy of overwhelmed inflammatory response. 
700 0 1 |a Lancaster Jack J. Jr.  |e aut 
700 0 1 |a Mészáros András  |e aut 
700 0 1 |a Weidinger Adelheid  |e aut 
856 4 0 |u http://publicatio.bibl.u-szeged.hu/12288/1/Kozlov_et_al_2017_Redox_Biology_u.pdf  |z Dokumentum-elérés