Infinite memory effects on the stabilization of a biharmonic Schrödinger equation

This paper deals with the stabilization of the linear biharmonic Schrödinger equation in an n-dimensional open bounded domain under Dirichlet–Neumann boundary conditions considering three infinite memory terms as damping mechanisms. We show that depending on the smoothness of initial data and the ar...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: de A. Capistrano-Filho Roberto
de Jesus Isadora Maria
Gonzalez Martinez Victor Hugo
Dokumentumtípus: Folyóirat
Megjelent: 2023
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Schrödinger egyenlet, Differenciálegyenlet
doi:10.14232/ejqtde.2023.1.39

Online Access:http://acta.bibl.u-szeged.hu/82289
LEADER 01407nas a2200229 i 4500
001 acta82289
005 20231116152855.0
008 231116s2023 hu o 0|| eng d
022 |a 1417-3875 
024 7 |a 10.14232/ejqtde.2023.1.39  |2 doi 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a eng 
100 2 |a de A. Capistrano-Filho Roberto 
245 1 0 |a Infinite memory effects on the stabilization of a biharmonic Schrödinger equation  |h [elektronikus dokumentum] /  |c  de A. Capistrano-Filho Roberto 
260 |c 2023 
300 |a 23 
490 0 |a Electronic journal of qualitative theory of differential equations 
520 3 |a This paper deals with the stabilization of the linear biharmonic Schrödinger equation in an n-dimensional open bounded domain under Dirichlet–Neumann boundary conditions considering three infinite memory terms as damping mechanisms. We show that depending on the smoothness of initial data and the arbitrary growth at infinity of the kernel function, this class of solution goes to zero with a polynomial decay rate like t −n depending on assumptions about the kernel function associated with the infinite memory terms. 
695 |a Schrödinger egyenlet, Differenciálegyenlet 
700 0 2 |a de Jesus Isadora Maria  |e aut 
700 0 2 |a Gonzalez Martinez Victor Hugo  |e aut 
856 4 0 |u http://acta.bibl.u-szeged.hu/82289/1/ejqtde_2023_039.pdf  |z Dokumentum-elérés