Caffarelli-Kohn-Nirenberg inequality for biharmonic equations with inhomogeneous term and Rellich potential

In this article, multiplicity of nontrivial solutions for an inhomogeneous singular biharmonic equation with Rellich potential are studied. Firstly, a negative energy solution of the studied equations is achieved via the Ekeland’s variational principle and Caffarelli–Kohn–Nirenberg inequality. Then...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Yu Yang
Zhao Yulin
Dokumentumtípus: Folyóirat
Megjelent: 2023
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Caffarelli-Kohn-Nirenberg egyenlőtlenség, Differenciálegyenlet
doi:10.14232/ejqtde.2023.1.26

Online Access:http://acta.bibl.u-szeged.hu/82276
LEADER 01253nas a2200217 i 4500
001 acta82276
005 20231116130005.0
008 231116s2023 hu o 0|| eng d
022 |a 1417-3875 
024 7 |a 10.14232/ejqtde.2023.1.26  |2 doi 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a eng 
100 1 |a Yu Yang 
245 1 0 |a Caffarelli-Kohn-Nirenberg inequality for biharmonic equations with inhomogeneous term and Rellich potential  |h [elektronikus dokumentum] /  |c  Yu Yang 
260 |c 2023 
300 |a 11 
490 0 |a Electronic journal of qualitative theory of differential equations 
520 3 |a In this article, multiplicity of nontrivial solutions for an inhomogeneous singular biharmonic equation with Rellich potential are studied. Firstly, a negative energy solution of the studied equations is achieved via the Ekeland’s variational principle and Caffarelli–Kohn–Nirenberg inequality. Then by applying Mountain pass theorem lack of Palais–Smale conditions, the second solution with positive energy is also obtained. 
695 |a Caffarelli-Kohn-Nirenberg egyenlőtlenség, Differenciálegyenlet 
700 0 1 |a Zhao Yulin  |e aut 
856 4 0 |u http://acta.bibl.u-szeged.hu/82276/1/ejqtde_2023_026.pdf  |z Dokumentum-elérés