Existence of positive ground state solutions of critical nonlinear Klein-Gordon-Maxwell systems
In this paper we study the following nonlinear Klein–Gordon–Maxwell system −∆u + [m2 0 − (ω + φ) 2 ]u = f(u) in R3 ∆φ = (ω + φ)u in R3 where 0 < ω < m0. Based on an abstract critical point theorem established by Jeanjean, the existence of positive ground state solutions is proved, when the non...
Elmentve itt :
Szerzők: | |
---|---|
Dokumentumtípus: | Folyóirat |
Megjelent: |
2022
|
Sorozat: | Electronic journal of qualitative theory of differential equations
|
Kulcsszavak: | Klein-Gordon-Maxwell rendszer - nemlineáris |
Tárgyszavak: | |
doi: | 10.14232/ejqtde.2022.1.44 |
Online Access: | http://acta.bibl.u-szeged.hu/78329 |
LEADER | 01352nas a2200229 i 4500 | ||
---|---|---|---|
001 | acta78329 | ||
005 | 20230313094832.0 | ||
008 | 230313s2022 hu o 0|| eng d | ||
022 | |a 1417-3875 | ||
024 | 7 | |a 10.14232/ejqtde.2022.1.44 |2 doi | |
040 | |a SZTE Egyetemi Kiadványok Repozitórium |b hun | ||
041 | |a eng | ||
100 | 1 | |a Xu Liping | |
245 | 1 | 0 | |a Existence of positive ground state solutions of critical nonlinear Klein-Gordon-Maxwell systems |h [elektronikus dokumentum] / |c Xu Liping |
260 | |c 2022 | ||
490 | 0 | |a Electronic journal of qualitative theory of differential equations | |
520 | 3 | |a In this paper we study the following nonlinear Klein–Gordon–Maxwell system −∆u + [m2 0 − (ω + φ) 2 ]u = f(u) in R3 ∆φ = (ω + φ)u in R3 where 0 < ω < m0. Based on an abstract critical point theorem established by Jeanjean, the existence of positive ground state solutions is proved, when the nonlinear term f(u) exhibits linear near zero and a general critical growth near infinity. Compared with other recent literature, some different arguments have been introduced and some results are extended. | |
650 | 4 | |a Természettudományok | |
650 | 4 | |a Matematika | |
695 | |a Klein-Gordon-Maxwell rendszer - nemlineáris | ||
700 | 0 | 1 | |a Chen Haibo |e aut |
856 | 4 | 0 | |u http://acta.bibl.u-szeged.hu/78329/1/ejqtde_2022_044.pdf |z Dokumentum-elérés |