On the solution manifold of a differential equation with a delay which has a zero
For a differential equation with a state-dependent delay we show that the associated solution manifold Xf of codimension 1 in the space C 1 ([−r, 0], R) is an almost graph over a hyperplane, which implies that Xf is diffeomorphic to the hyperplane. For the case considered previous results only provi...
Elmentve itt :
Szerző: | |
---|---|
Dokumentumtípus: | Folyóirat |
Megjelent: |
2022
|
Sorozat: | Electronic journal of qualitative theory of differential equations
|
Kulcsszavak: | Differenciálegyenlet |
Tárgyszavak: | |
doi: | 10.14232/ejqtde.2022.1.31 |
Online Access: | http://acta.bibl.u-szeged.hu/76532 |
Tartalmi kivonat: | For a differential equation with a state-dependent delay we show that the associated solution manifold Xf of codimension 1 in the space C 1 ([−r, 0], R) is an almost graph over a hyperplane, which implies that Xf is diffeomorphic to the hyperplane. For the case considered previous results only provide a covering by 2 almost graphs. |
---|---|
Terjedelem/Fizikai jellemzők: | 10 |
ISSN: | 1417-3875 |