Dynamical behavior of a parametrized family of one-dimensional maps

The connection of these maps to homoclinic loops acts like an amplifier of the map behavior, and makes it interesting also in the case where all map orbits approach zero (but in many possible ways). We introduce so-called ‘flat’ intervals containing exactly one maximum or minimum, and so-called ‘ste...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerző: Mustu Erkan
Dokumentumtípus: Folyóirat
Megjelent: 2022
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Differenciálegyenlet
Tárgyszavak:
doi:10.14232/ejqtde.2022.1.25

Online Access:http://acta.bibl.u-szeged.hu/76526
LEADER 01636nas a2200229 i 4500
001 acta76526
005 20221108083326.0
008 220908s2022 hu o 0|| eng d
022 |a 1417-3875 
024 7 |a 10.14232/ejqtde.2022.1.25  |2 doi 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a eng 
100 1 |a Mustu Erkan 
245 1 0 |a Dynamical behavior of a parametrized family of one-dimensional maps  |h [elektronikus dokumentum] /  |c  Mustu Erkan 
260 |c 2022 
300 |a 35 
490 0 |a Electronic journal of qualitative theory of differential equations 
520 3 |a The connection of these maps to homoclinic loops acts like an amplifier of the map behavior, and makes it interesting also in the case where all map orbits approach zero (but in many possible ways). We introduce so-called ‘flat’ intervals containing exactly one maximum or minimum, and so-called ‘steep’ intervals containing exactly one zero point of fµ,ω and no zero of f 0 µ,ω. For specific parameters µ and ω, we construct an open set of points with orbits staying entirely in the ‘flat’ intervals in section three. In section four, we describe orbits staying in the ‘steep’ intervals (for open parameter sets), and in section five (for specific parameters) orbits regularly changing between ‘steep’ and ‘flat’ intervals. Both orbit types are described by symbol sequences, and it is shown that their Lebesgue measure is zero. 
650 4 |a Természettudományok 
650 4 |a Matematika 
695 |a Differenciálegyenlet 
856 4 0 |u http://acta.bibl.u-szeged.hu/76526/1/ejqtde_2022_025.pdf  |z Dokumentum-elérés