Machine learning techniques for land use/land cover classification of medium resolution optical satellite imagery focusing on temporary inundated areas
Classification of multispectral optical satellite data using machine learning techniques to derive land use/land cover thematic data is important for many applications. Comparing the latest algorithms, our research aims to determine the best option to classify land use/land cover with special focus...
Elmentve itt :
Szerzők: |
Van Leeuwen Boudewijn Tobak Zalán Kovács Ferenc |
---|---|
Dokumentumtípus: | Cikk |
Megjelent: |
2020
|
Sorozat: | Journal of environmental geography
13 No. 1-2 |
Kulcsszavak: | Térinformatika |
Tárgyszavak: | |
doi: | 10.2478/jengeo-2020-0005 |
Online Access: | http://acta.bibl.u-szeged.hu/76072 |
Hasonló tételek
-
Machine Learning Techniques for Land Use/Land Cover Classification of Medium Resolution Optical Satellite Imagery Focusing on Temporary Inundated Areas
Szerző: Van Leeuwen Boudewijn, et al.
Megjelent: (2020) -
Improvement in Satellite Image-Based Land Cover Classification with Landscape Metrics
Szerző: Gudmann András Viktor, et al.
Megjelent: (2020) -
GIS workflow for continuous soil moisture estimation based on medium resolution satellite data
Szerző: Van Leeuwen Boudewijn
Megjelent: (2015) -
Continuous monitoring of inland excess water using medium resolution active and passive satellite data
Szerző: Van Leeuwen Boudewijn
Megjelent: (2021) -
Spatiotemporal Assessment of Vegetation Indices and Land Cover for Erbil City and Its Surrounding Using Modis Imageries
Szerző: Hussein Shwan O., et al.
Megjelent: (2017)