Regression estimators for the tail index

We propose a class of weighted least squares estimators for the tail index of a distribution function with a regularly varying tail. Our approach is based on the method developed by Holan and McElroy (2010) for the Parzen tail index. We prove asymptotic normality and consistency for the estimators u...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: AL-Najafi Amenah
Stachó László Lajos
Viharos László
Dokumentumtípus: Cikk
Megjelent: 2021
Sorozat:Acta scientiarum mathematicarum 87 No. 3-4
Kulcsszavak:Valószínűségszámítás
Tárgyszavak:
doi:10.14232/actasm-020-361-6

Online Access:http://acta.bibl.u-szeged.hu/75859
Leíró adatok
Tartalmi kivonat:We propose a class of weighted least squares estimators for the tail index of a distribution function with a regularly varying tail. Our approach is based on the method developed by Holan and McElroy (2010) for the Parzen tail index. We prove asymptotic normality and consistency for the estimators under suitable assumptions. These and earlier estimators are compared in various models through a simulation study using the mean squared error as criterion. The results show that the weighted least squares estimator has good performance.
Terjedelem/Fizikai jellemzők:649-678
ISSN:2064-8316