Commuting row contractions with polynomial characteristic functions

A characteristic function is a special operator-valued analytic function defined on the open unit ball of C n associated with an n-tuple of commuting row contraction on some Hilbert space. In this paper, we continue our study of the representations of n-tuples of commuting row contractions on Hilber...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Bhattacharjee Monojit
Haria Kalpesh J.
Sarkar Jaydeb
Dokumentumtípus: Cikk
Megjelent: 2021
Sorozat:Acta scientiarum mathematicarum 87 No. 3-4
Kulcsszavak:Analízis - matematikai, Függvény
Tárgyszavak:
doi:10.14232/actasm-020-303-x

Online Access:http://acta.bibl.u-szeged.hu/75849
LEADER 01645nab a2200253 i 4500
001 acta75849
005 20220524130058.0
008 220524s2021 hu o 0|| eng d
022 |a 2064-8316 
024 7 |a 10.14232/actasm-020-303-x  |2 doi 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a eng 
100 1 |a Bhattacharjee Monojit 
245 1 0 |a Commuting row contractions with polynomial characteristic functions  |h [elektronikus dokumentum] /  |c  Bhattacharjee Monojit 
260 |c 2021 
300 |a 429-461 
490 0 |a Acta scientiarum mathematicarum  |v 87 No. 3-4 
520 3 |a A characteristic function is a special operator-valued analytic function defined on the open unit ball of C n associated with an n-tuple of commuting row contraction on some Hilbert space. In this paper, we continue our study of the representations of n-tuples of commuting row contractions on Hilbert spaces, which have polynomial characteristic functions. Gleason’s problem plays an important role in the representations of row contractions. We further complement the representations of our row contractions by proving theorems concerning factorizations of characteristic functions. We also emphasize the importance and the role of noncommutative operator theory and noncommutative varieties to the classification problem of polynomial characteristic functions. 
650 4 |a Természettudományok 
650 4 |a Matematika 
695 |a Analízis - matematikai, Függvény 
700 0 1 |a Haria Kalpesh J.  |e aut 
700 0 1 |a Sarkar Jaydeb  |e aut 
856 4 0 |u http://acta.bibl.u-szeged.hu/75849/1/math_087_numb_003-004_429-461.pdf  |z Dokumentum-elérés