Commuting row contractions with polynomial characteristic functions
A characteristic function is a special operator-valued analytic function defined on the open unit ball of C n associated with an n-tuple of commuting row contraction on some Hilbert space. In this paper, we continue our study of the representations of n-tuples of commuting row contractions on Hilber...
Elmentve itt :
Szerzők: | |
---|---|
Dokumentumtípus: | Cikk |
Megjelent: |
2021
|
Sorozat: | Acta scientiarum mathematicarum
87 No. 3-4 |
Kulcsszavak: | Analízis - matematikai, Függvény |
Tárgyszavak: | |
doi: | 10.14232/actasm-020-303-x |
Online Access: | http://acta.bibl.u-szeged.hu/75849 |
LEADER | 01645nab a2200253 i 4500 | ||
---|---|---|---|
001 | acta75849 | ||
005 | 20220524130058.0 | ||
008 | 220524s2021 hu o 0|| eng d | ||
022 | |a 2064-8316 | ||
024 | 7 | |a 10.14232/actasm-020-303-x |2 doi | |
040 | |a SZTE Egyetemi Kiadványok Repozitórium |b hun | ||
041 | |a eng | ||
100 | 1 | |a Bhattacharjee Monojit | |
245 | 1 | 0 | |a Commuting row contractions with polynomial characteristic functions |h [elektronikus dokumentum] / |c Bhattacharjee Monojit |
260 | |c 2021 | ||
300 | |a 429-461 | ||
490 | 0 | |a Acta scientiarum mathematicarum |v 87 No. 3-4 | |
520 | 3 | |a A characteristic function is a special operator-valued analytic function defined on the open unit ball of C n associated with an n-tuple of commuting row contraction on some Hilbert space. In this paper, we continue our study of the representations of n-tuples of commuting row contractions on Hilbert spaces, which have polynomial characteristic functions. Gleason’s problem plays an important role in the representations of row contractions. We further complement the representations of our row contractions by proving theorems concerning factorizations of characteristic functions. We also emphasize the importance and the role of noncommutative operator theory and noncommutative varieties to the classification problem of polynomial characteristic functions. | |
650 | 4 | |a Természettudományok | |
650 | 4 | |a Matematika | |
695 | |a Analízis - matematikai, Függvény | ||
700 | 0 | 1 | |a Haria Kalpesh J. |e aut |
700 | 0 | 1 | |a Sarkar Jaydeb |e aut |
856 | 4 | 0 | |u http://acta.bibl.u-szeged.hu/75849/1/math_087_numb_003-004_429-461.pdf |z Dokumentum-elérés |