Asymptotic behavior of solutions to difference equations in Banach spaces
We investigate the asymptotic properties of solutions to higher order nonlinear difference equations in Banach spaces. We introduce a new technique based on a vector version of discrete L’Hospital’s rule, remainder operator, and the regional topology on the space of all sequences on a given Banach s...
Elmentve itt :
Szerző: | |
---|---|
Dokumentumtípus: | Folyóirat |
Megjelent: |
2021
|
Sorozat: | Electronic journal of qualitative theory of differential equations
|
Kulcsszavak: | Differenciálegyenlet, Banach tér |
Tárgyszavak: | |
doi: | 10.14232/ejqtde.2021.1.88 |
Online Access: | http://acta.bibl.u-szeged.hu/75809 |
LEADER | 01360nas a2200229 i 4500 | ||
---|---|---|---|
001 | acta75809 | ||
005 | 20220523131506.0 | ||
008 | 220523s2021 hu o 0|| eng d | ||
022 | |a 1417-3875 | ||
024 | 7 | |a 10.14232/ejqtde.2021.1.88 |2 doi | |
040 | |a SZTE Egyetemi Kiadványok Repozitórium |b hun | ||
041 | |a eng | ||
100 | 1 | |a Migda Janusz | |
245 | 1 | 0 | |a Asymptotic behavior of solutions to difference equations in Banach spaces |h [elektronikus dokumentum] / |c Migda Janusz |
260 | |c 2021 | ||
300 | |a 17 | ||
490 | 0 | |a Electronic journal of qualitative theory of differential equations | |
520 | 3 | |a We investigate the asymptotic properties of solutions to higher order nonlinear difference equations in Banach spaces. We introduce a new technique based on a vector version of discrete L’Hospital’s rule, remainder operator, and the regional topology on the space of all sequences on a given Banach space. We establish sufficient conditions for the existence of solutions with prescribed asymptotic behavior. Moreover, we are dealing with the problem of approximation of solutions. Our technique allows us to control the degree of approximation of solutions. | |
650 | 4 | |a Természettudományok | |
650 | 4 | |a Matematika | |
695 | |a Differenciálegyenlet, Banach tér | ||
856 | 4 | 0 | |u http://acta.bibl.u-szeged.hu/75809/1/ejqtde_2021_088.pdf |z Dokumentum-elérés |