On the number of generalized Sidon sets

A set A of nonnegative integers is called a Sidon set if there is no Sidon 4-tuple, i.e., (a, b, c, d) in A with a + b = c + d and {a, b} ∩ {c, d} = ∅. Cameron and Erdős proposed the problem of determining the number of Sidon sets in [n]. Results of Kohayakawa, Lee, Rödl and Samotij, and Saxton and...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Balogh József
Li Lina
Dokumentumtípus: Cikk
Megjelent: 2021
Sorozat:Acta scientiarum mathematicarum 87 No. 1-2
Kulcsszavak:Matematika
doi:10.14232/actasm-018-777-z

Online Access:http://acta.bibl.u-szeged.hu/73914
LEADER 01574nab a2200217 i 4500
001 acta73914
005 20211115151235.0
008 211115s2021 hu o 0|| eng d
022 |a 2064-8316 
024 7 |a 10.14232/actasm-018-777-z  |2 doi 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a eng 
100 1 |a Balogh József 
245 1 3 |a On the number of generalized Sidon sets  |h [elektronikus dokumentum] /  |c  Balogh József 
260 |c 2021 
300 |a 3-21 
490 0 |a Acta scientiarum mathematicarum  |v 87 No. 1-2 
520 3 |a A set A of nonnegative integers is called a Sidon set if there is no Sidon 4-tuple, i.e., (a, b, c, d) in A with a + b = c + d and {a, b} ∩ {c, d} = ∅. Cameron and Erdős proposed the problem of determining the number of Sidon sets in [n]. Results of Kohayakawa, Lee, Rödl and Samotij, and Saxton and Thomason have established that the number of Sidon sets is between 2 (1.16+o(1))√n and 2 (6.442+o(1))√n . An α-generalized Sidon set in [n] is a set with at most α Sidon 4-tuples. One way to extend the problem of Cameron and Erdős is to estimate the number of α-generalized Sidon sets in [n]. We show that the number of (n/ log4 n)-generalized Sidon sets in [n] with additional restrictions is 2 Θ(√n) In particular, the number of (n/ log5 n)-generalized Sidon sets in [n] is 2 Θ(√n) Our approach is based on some variants of the graph container method. 
695 |a Matematika 
700 0 1 |a Li Lina  |e aut 
856 4 0 |u http://acta.bibl.u-szeged.hu/73914/1/math_087_numb_001-002_003-021.pdf  |z Dokumentum-elérés