Essential spherical isometries

A result due to Williams, Stampfli and Fillmore shows that an essential isometry T on a Hilbert space H is a compact perturbation of an isometry if and only if ind(T) ≤ 0. A recent result of S. Chavan yields an analogous characterization of essential spherical isometries T = (T1, . . . , Tn) ∈ B(H)...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerző: Scherer Marcel
Dokumentumtípus: Cikk
Megjelent: 2020
Sorozat:Acta scientiarum mathematicarum 86 No. 3-4
Kulcsszavak:Hilbert-tér, Fillmore, Stampfli és Williams tétel, Izometria
doi:10.14232/actasm-020-767-3

Online Access:http://acta.bibl.u-szeged.hu/73909
Leíró adatok
Tartalmi kivonat:A result due to Williams, Stampfli and Fillmore shows that an essential isometry T on a Hilbert space H is a compact perturbation of an isometry if and only if ind(T) ≤ 0. A recent result of S. Chavan yields an analogous characterization of essential spherical isometries T = (T1, . . . , Tn) ∈ B(H) n with dim( Tn i=1 ker(Ti)) ≤ dim( Tn i=1 ker(T i )). In the present note we show that in dimension n > 1 the result of Chavan holds without any condition on the dimensions of the joint kernels of T and T.
Terjedelem/Fizikai jellemzők:667-670
ISSN:2064-8316