New Hardy-type integral inequalities
The proofs of generalized Hardy, Copson, Bennett, Leindler-type, and Levinson integral inequalities are revisited. It is contemplated to establish new proof of these classical inequalities using probability density function. New integral inequalities of Hardy-type involving the r th order Generalize...
Elmentve itt :
Szerző: | |
---|---|
Dokumentumtípus: | Cikk |
Megjelent: |
2020
|
Sorozat: | Acta scientiarum mathematicarum
86 No. 3-4 |
Kulcsszavak: | Matematika, Integrálegyenlőtlenség |
doi: | 10.14232/actasm-019-750-7 |
Online Access: | http://acta.bibl.u-szeged.hu/73899 |
Tartalmi kivonat: | The proofs of generalized Hardy, Copson, Bennett, Leindler-type, and Levinson integral inequalities are revisited. It is contemplated to establish new proof of these classical inequalities using probability density function. New integral inequalities of Hardy-type involving the r th order Generalized Riemann–Liouville, Generalized Weyl, Erdélyi–Kober, (k, ν)-Riemann–Liouville, and (k, ν)-Weyl fractional integrals are established through a probabilistic approach. The Kullback–Leibler inequality has been applied to compute the best possible constant factor associated with each of these inequalities. |
---|---|
Terjedelem/Fizikai jellemzők: | 467-491 |
ISSN: | 2064-8316 |