Positive solutions for second-order differential equations with singularities and separated integral boundary conditions

We study the existence of positive solutions for second-order differential equations with separated integral boundary conditions. The nonlinear part of the equation involves the derivative and may be singular for the second and third space variables. The result ensures existence of a positive soluti...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Zhang Yanlei
Abdella Kenzu
Feng Wenying
Dokumentumtípus: Folyóirat
Megjelent: 2020
Sorozat:Electronic journal of qualitative theory of differential equations : special edition 4 No. 75
Kulcsszavak:Másodrendű differenciálegyenlet
doi:10.14232/ejqtde.2020.1.75

Online Access:http://acta.bibl.u-szeged.hu/73765
LEADER 01573nas a2200229 i 4500
001 acta73765
005 20211112105340.0
008 211112s2020 hu o 0|| eng d
022 |a 1417-3875 
024 7 |a 10.14232/ejqtde.2020.1.75  |2 doi 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a eng 
100 1 |a Zhang Yanlei 
245 1 0 |a Positive solutions for second-order differential equations with singularities and separated integral boundary conditions  |h [elektronikus dokumentum] /  |c  Zhang Yanlei 
260 |c 2020 
300 |a 12 
490 0 |a Electronic journal of qualitative theory of differential equations : special edition  |v 4 No. 75 
520 3 |a We study the existence of positive solutions for second-order differential equations with separated integral boundary conditions. The nonlinear part of the equation involves the derivative and may be singular for the second and third space variables. The result ensures existence of a positive solution when the parameters are in certain ranges. The proof depends on general properties of the associated Green’s function and the Krasnosel’skii–Guo fixed point theorem applied to a perturbed Hammerstein integral operator. Both numerical and analytical examples are constructed to illustrate applications of the theorem to a group of equations. The result generalizes previous work. 
695 |a Másodrendű differenciálegyenlet 
700 0 1 |a Abdella Kenzu  |e aut 
700 0 1 |a Feng Wenying  |e aut 
856 4 0 |u http://acta.bibl.u-szeged.hu/73765/1/ejqtde_spec_004_2020_075.pdf  |z Dokumentum-elérés