Local invariant manifolds for delay differential equations with state space in C1((−∞, 0], R n)

Consider the delay differential equation x 0 (t) = f(xt) with the history xt : (−∞, 0] → Rn of x at ‘time’ t defined by xt(s) = x(t + s). In order not to lose any possible entire solution of any example we work in the Fréchet space C 1 ((−∞, 0], Rn with the topology of uniform convergence of maps an...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerző: Walther Hans-Otto
Dokumentumtípus: Folyóirat
Megjelent: 2016
Sorozat:Electronic journal of qualitative theory of differential equations : special edition 2 No. 85
Kulcsszavak:Differenciálegyenlet - késleltetett
doi:10.14232/ejqtde.2016.1.85

Online Access:http://acta.bibl.u-szeged.hu/73752
LEADER 01927nas a2200205 i 4500
001 acta73752
005 20211112094210.0
008 211111s2016 hu o 0|| eng d
022 |a 1417-3875 
024 7 |a 10.14232/ejqtde.2016.1.85  |2 doi 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a eng 
100 1 |a Walther Hans-Otto 
245 1 0 |a Local invariant manifolds for delay differential equations with state space in C1((−∞, 0], R n)  |h [elektronikus dokumentum] /  |c  Walther Hans-Otto 
260 |c 2016 
300 |a 29 
490 0 |a Electronic journal of qualitative theory of differential equations : special edition  |v 2 No. 85 
520 3 |a Consider the delay differential equation x 0 (t) = f(xt) with the history xt : (−∞, 0] → Rn of x at ‘time’ t defined by xt(s) = x(t + s). In order not to lose any possible entire solution of any example we work in the Fréchet space C 1 ((−∞, 0], Rn with the topology of uniform convergence of maps and their derivatives on compact sets. A previously obtained result, designed for the application to examples with unbounded state-dependent delay, says that for maps f which are slightly better than continuously differentiable the delay differential equation defines a continuous semiflow on a continuously differentiable submanifold X ⊂ C 1 of codimension n, with all time-t-maps continuously differentiable. Here continuously differentiable for maps in Fréchet spaces is understood in the sense of Michal and Bastiani. It implies that f is of locally bounded delay in a certain sense. Using this property – and a related further mild smoothness hypothesis on f – we construct stable, unstable, and center manifolds of the semiflow at stationary points, by means of transversality and embeddings. 
695 |a Differenciálegyenlet - késleltetett 
856 4 0 |u http://acta.bibl.u-szeged.hu/73752/1/ejqtde_spec_002_2016_085.pdf  |z Dokumentum-elérés