Numerical bifurcation analysis of a class of nonlinear renewal equations

We show, by way of an example, that numerical bifurcation tools for ODE yield reliable bifurcation diagrams when applied to the pseudospectral approximation of a one-parameter family of nonlinear renewal equations. The example resembles logistic- and Ricker-type population equations and exhibits tra...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Breda Dimitri
Diekmann Odo
Liessi Davide
Scarabel Francesca
Dokumentumtípus: Folyóirat
Megjelent: 2016
Sorozat:Electronic journal of qualitative theory of differential equations : special edition 2 No. 65
Kulcsszavak:Differenciálegyenlet, Bifurkáció
doi:10.14232/ejqtde.2016.1.65

Online Access:http://acta.bibl.u-szeged.hu/73732
LEADER 01721nas a2200241 i 4500
001 acta73732
005 20211112094205.0
008 211111s2016 hu o 0|| eng d
022 |a 1417-3875 
024 7 |a 10.14232/ejqtde.2016.1.65  |2 doi 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a eng 
100 1 |a Breda Dimitri 
245 1 0 |a Numerical bifurcation analysis of a class of nonlinear renewal equations  |h [elektronikus dokumentum] /  |c  Breda Dimitri 
260 |c 2016 
300 |a 24 
490 0 |a Electronic journal of qualitative theory of differential equations : special edition  |v 2 No. 65 
520 3 |a We show, by way of an example, that numerical bifurcation tools for ODE yield reliable bifurcation diagrams when applied to the pseudospectral approximation of a one-parameter family of nonlinear renewal equations. The example resembles logistic- and Ricker-type population equations and exhibits transcritical, Hopf and period doubling bifurcations. The reliability is demonstrated by comparing the results to those obtained by a reduction to a Hamiltonian Kaplan–Yorke system and to those obtained by direct application of collocation methods (the latter also yield estimates for positive Lyapunov exponents in the chaotic regime). We conclude that the methodology described here works well for a class of delay equations for which currently no tailor-made tools exist (and for which it is doubtful that these will ever be constructed). 
695 |a Differenciálegyenlet, Bifurkáció 
700 0 1 |a Diekmann Odo  |e aut 
700 0 1 |a Liessi Davide  |e aut 
700 0 1 |a Scarabel Francesca  |e aut 
856 4 0 |u http://acta.bibl.u-szeged.hu/73732/1/ejqtde_spec_002_2016_065.pdf  |z Dokumentum-elérés