Ground state sign-changing solutions and infinitely many solutions for fractional logarithmic Schrödinger equations in bounded domains
We consider a class of fractional logarithmic Schrödinger equation in bounded domains. First, by means of the constraint variational method, quantitative deformation lemma and some new inequalities, the positive ground state solutions and ground state sign-changing solutions are obtained. These ineq...
Elmentve itt :
Szerzők: |
Tong Yonghui Guo Hui Figueiredo Giovany M. |
---|---|
Dokumentumtípus: | Folyóirat |
Megjelent: |
2021
|
Sorozat: | Electronic journal of qualitative theory of differential equations
|
Kulcsszavak: | Differenciálegyenlet, Schrödinger-egyenlet |
doi: | 10.14232/ejqtde.2021.1.70 |
Online Access: | http://acta.bibl.u-szeged.hu/73722 |
Hasonló tételek
-
Infinitely many solutions for nonhomogeneous Choquard equations
Szerző: Wang Tao, et al.
Megjelent: (2019) -
Infinitely many solutions to quasilinear Schrödinger equations with critical exponent
Szerző: Wang Li, et al.
Megjelent: (2019) -
Ground state sign-changing solutions for Kirchhoff equations with logarithmic nonlinearity
Szerző: Wen Lixi, et al.
Megjelent: (2019) -
Infinitely many solutions for a quasilinear Schrödinger equation with Hardy potentials
Szerző: Shang Tingting, et al.
Megjelent: (2020) -
Infinitely many solutions for Schrödinger–Kirchhoff-type equations involving indefinite potential
Szerző: Zhang Qingye, et al.
Megjelent: (2017)