Implicit elliptic equations via Krasnoselskii-Schaefer type theorems
Existence of solutions to the Dirichlet problem for implicit elliptic equations is established by using Krasnoselskii–Schaefer type theorems owed to Burton–Kirk and Gao–Li–Zhang. The nonlinearity of the equations splits into two terms: one term depending on the state, its gradient and the elliptic p...
Elmentve itt :
Szerző: | |
---|---|
Dokumentumtípus: | Folyóirat |
Megjelent: |
2020
|
Sorozat: | Electronic journal of qualitative theory of differential equations
|
Kulcsszavak: | Differenciálegyenlet |
doi: | 10.14232/ejqtde.2020.1.87 |
Online Access: | http://acta.bibl.u-szeged.hu/73648 |
LEADER | 01414nas a2200205 i 4500 | ||
---|---|---|---|
001 | acta73648 | ||
005 | 20211105152433.0 | ||
008 | 211105s2020 hu o 0|| eng d | ||
022 | |a 1417-3875 | ||
024 | 7 | |a 10.14232/ejqtde.2020.1.87 |2 doi | |
040 | |a SZTE Egyetemi Kiadványok Repozitórium |b hun | ||
041 | |a eng | ||
100 | 1 | |a Precup Radu | |
245 | 1 | 0 | |a Implicit elliptic equations via Krasnoselskii-Schaefer type theorems |h [elektronikus dokumentum] / |c Precup Radu |
260 | |c 2020 | ||
300 | |a 9 | ||
490 | 0 | |a Electronic journal of qualitative theory of differential equations | |
520 | 3 | |a Existence of solutions to the Dirichlet problem for implicit elliptic equations is established by using Krasnoselskii–Schaefer type theorems owed to Burton–Kirk and Gao–Li–Zhang. The nonlinearity of the equations splits into two terms: one term depending on the state, its gradient and the elliptic principal part is Lipschitz continuous, and the other one only depending on the state and its gradient has a superlinear growth and satisfies a sign condition. Correspondingly, the associated operator is a sum of a contraction with a completely continuous mapping. The solutions are found in a ball of a Lebesgue space of a sufficiently large radius established by the method of a priori bounds. | |
695 | |a Differenciálegyenlet | ||
856 | 4 | 0 | |u http://acta.bibl.u-szeged.hu/73648/1/ejqtde_2020_087.pdf |z Dokumentum-elérés |