Nonlocal boundary value problems with BV-type data

In this paper we present some existence and uniqueness results for solutions of second order boundary value problems, which are functions of bounded variation along with their derivatives. To this end, we apply fixed point theorems to an equivalent nonlinear perturbed Hammerstein integral equation....

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Appell Jürgen
Bugajewska Daria
Reinwand Simon
Dokumentumtípus: Folyóirat
Megjelent: 2020
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Differenciálegyenlet - határérték probléma
doi:10.14232/ejqtde.2020.1.69

Online Access:http://acta.bibl.u-szeged.hu/73630
LEADER 01495nas a2200229 i 4500
001 acta73630
005 20211105130741.0
008 211105s2020 hu o 0|| eng d
022 |a 1417-3875 
024 7 |a 10.14232/ejqtde.2020.1.69  |2 doi 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a eng 
100 1 |a Appell Jürgen 
245 1 0 |a Nonlocal boundary value problems with BV-type data  |h [elektronikus dokumentum] /  |c  Appell Jürgen 
260 |c 2020 
300 |a 18 
490 0 |a Electronic journal of qualitative theory of differential equations 
520 3 |a In this paper we present some existence and uniqueness results for solutions of second order boundary value problems, which are functions of bounded variation along with their derivatives. To this end, we apply fixed point theorems to an equivalent nonlinear perturbed Hammerstein integral equation. Here we consider non- standard boundary conditions like coupled boundary conditions, uncoupled boundary conditions, or integral-type boundary conditions. We also prove an abstract result concerning the spectral radii of some general classes of operators which applies to all boundary value problems mentioned above. The abstract results are throughout illustrated by a large number of examples. 
695 |a Differenciálegyenlet - határérték probléma 
700 0 1 |a Bugajewska Daria  |e aut 
700 0 1 |a Reinwand Simon  |e aut 
856 4 0 |u http://acta.bibl.u-szeged.hu/73630/1/ejqtde_2020_069.pdf  |z Dokumentum-elérés