Uniqueness and nonuniqueness of fronts for degenerate diffusion-convection reaction equations

We consider a scalar parabolic equation in one spatial dimension. The equation is constituted by a convective term, a reaction term with one or two equilibria, and a positive diffusivity which can however vanish. We prove the existence and several properties of traveling-wave solutions to such an eq...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Berti Diego
Corli Andrea
Malaguti Luisa
Dokumentumtípus: Folyóirat
Megjelent: 2020
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Differenciálegyenlet
doi:10.14232/ejqtde.2020.1.66

Online Access:http://acta.bibl.u-szeged.hu/73627
LEADER 01355nas a2200229 i 4500
001 acta73627
005 20211105122755.0
008 211105s2020 hu o 0|| eng d
022 |a 1417-3875 
024 7 |a 10.14232/ejqtde.2020.1.66  |2 doi 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a eng 
100 1 |a Berti Diego 
245 1 0 |a Uniqueness and nonuniqueness of fronts for degenerate diffusion-convection reaction equations  |h [elektronikus dokumentum] /  |c  Berti Diego 
260 |c 2020 
300 |a 34 
490 0 |a Electronic journal of qualitative theory of differential equations 
520 3 |a We consider a scalar parabolic equation in one spatial dimension. The equation is constituted by a convective term, a reaction term with one or two equilibria, and a positive diffusivity which can however vanish. We prove the existence and several properties of traveling-wave solutions to such an equation. In particular, we provide a sharp estimate for the minimal speed of the profiles and improve previous results about the regularity of wavefronts. Moreover, we show the existence of an infinite number of semi-wavefronts with the same speed. 
695 |a Differenciálegyenlet 
700 0 1 |a Corli Andrea  |e aut 
700 0 1 |a Malaguti Luisa  |e aut 
856 4 0 |u http://acta.bibl.u-szeged.hu/73627/1/ejqtde_2020_066.pdf  |z Dokumentum-elérés