Uniqueness and nonuniqueness of fronts for degenerate diffusion-convection reaction equations
We consider a scalar parabolic equation in one spatial dimension. The equation is constituted by a convective term, a reaction term with one or two equilibria, and a positive diffusivity which can however vanish. We prove the existence and several properties of traveling-wave solutions to such an eq...
Elmentve itt :
Szerzők: | |
---|---|
Dokumentumtípus: | Folyóirat |
Megjelent: |
2020
|
Sorozat: | Electronic journal of qualitative theory of differential equations
|
Kulcsszavak: | Differenciálegyenlet |
doi: | 10.14232/ejqtde.2020.1.66 |
Online Access: | http://acta.bibl.u-szeged.hu/73627 |
LEADER | 01355nas a2200229 i 4500 | ||
---|---|---|---|
001 | acta73627 | ||
005 | 20211105122755.0 | ||
008 | 211105s2020 hu o 0|| eng d | ||
022 | |a 1417-3875 | ||
024 | 7 | |a 10.14232/ejqtde.2020.1.66 |2 doi | |
040 | |a SZTE Egyetemi Kiadványok Repozitórium |b hun | ||
041 | |a eng | ||
100 | 1 | |a Berti Diego | |
245 | 1 | 0 | |a Uniqueness and nonuniqueness of fronts for degenerate diffusion-convection reaction equations |h [elektronikus dokumentum] / |c Berti Diego |
260 | |c 2020 | ||
300 | |a 34 | ||
490 | 0 | |a Electronic journal of qualitative theory of differential equations | |
520 | 3 | |a We consider a scalar parabolic equation in one spatial dimension. The equation is constituted by a convective term, a reaction term with one or two equilibria, and a positive diffusivity which can however vanish. We prove the existence and several properties of traveling-wave solutions to such an equation. In particular, we provide a sharp estimate for the minimal speed of the profiles and improve previous results about the regularity of wavefronts. Moreover, we show the existence of an infinite number of semi-wavefronts with the same speed. | |
695 | |a Differenciálegyenlet | ||
700 | 0 | 1 | |a Corli Andrea |e aut |
700 | 0 | 1 | |a Malaguti Luisa |e aut |
856 | 4 | 0 | |u http://acta.bibl.u-szeged.hu/73627/1/ejqtde_2020_066.pdf |z Dokumentum-elérés |