Traveling front of polyhedral shape for a nonlocal delayed diffusion equation
This paper is concerned with the existence and stability of traveling fronts with convex polyhedral shape for nonlocal delay diffusion equations. By using the existence and stability results of V-form fronts and pyramidal traveling fronts, we first show that there exists a traveling front V(x, y, z)...
Elmentve itt :
Szerző: | |
---|---|
Dokumentumtípus: | Folyóirat |
Megjelent: |
2020
|
Sorozat: | Electronic journal of qualitative theory of differential equations
|
Kulcsszavak: | Differenciálegyenlet - késleltetett |
doi: | 10.14232/ejqtde.2020.1.64 |
Online Access: | http://acta.bibl.u-szeged.hu/73625 |
Tartalmi kivonat: | This paper is concerned with the existence and stability of traveling fronts with convex polyhedral shape for nonlocal delay diffusion equations. By using the existence and stability results of V-form fronts and pyramidal traveling fronts, we first show that there exists a traveling front V(x, y, z) with polyhedral shape of nonlocal delay diffusion equation associated with z = h(x, y). Moreover, the asymptotic stability and other qualitative properties of such traveling front V(x, y, z) are also established. |
---|---|
Terjedelem/Fizikai jellemzők: | 13 |
ISSN: | 1417-3875 |