Antiprincipal solutions at infinity for symplectic systems on time scales

In this paper we introduce a new concept of antiprincipal solutions at infinity for symplectic systems on time scales. This concept complements the earlier notion of principal solutions at infinity for these systems by the second author and Šepitka (2016). We derive main properties of antiprincipal...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Dřímalová Iva
Hilscher Roman Šimon
Dokumentumtípus: Folyóirat
Megjelent: 2020
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Hamilton-rendszer, Differenciálegyenlet
doi:10.14232/ejqtde.2020.1.44

Online Access:http://acta.bibl.u-szeged.hu/70157
LEADER 01713nas a2200205 i 4500
001 acta70157
005 20211020135205.0
008 201201s2020 hu o 0|| zxx d
022 |a 1417-3875 
024 7 |a 10.14232/ejqtde.2020.1.44  |2 doi 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a zxx 
100 1 |a Dřímalová Iva 
245 1 0 |a Antiprincipal solutions at infinity for symplectic systems on time scales  |h [elektronikus dokumentum] /  |c  Dřímalová Iva 
260 |c 2020 
490 0 |a Electronic journal of qualitative theory of differential equations 
520 3 |a In this paper we introduce a new concept of antiprincipal solutions at infinity for symplectic systems on time scales. This concept complements the earlier notion of principal solutions at infinity for these systems by the second author and Šepitka (2016). We derive main properties of antiprincipal solutions at infinity, including their existence for all ranks in a given range and a construction from a certain minimal antiprincipal solution at infinity. We apply our new theory of antiprincipal solutions at infinity in the study of principal solutions, and in particular in the Reid construction of the minimal principal solution at infinity. In this work we do not assume any normality condition on the system, and we unify and extend to arbitrary time scales the theory of antiprincipal solutions at infinity of linear Hamiltonian differential systems and the theory of dominant solutions at infinity of symplectic difference systems. 
695 |a Hamilton-rendszer, Differenciálegyenlet 
700 0 1 |a Hilscher Roman Šimon  |e aut 
856 4 0 |u http://acta.bibl.u-szeged.hu/70157/1/ejqtde_2020_044.pdf  |z Dokumentum-elérés