Existence of weak solutions for quasilinear Schrödinger equations with a parameter

In this paper, we study the following quasilinear Schrödinger equation of the form −∆pu + V(x)|u| p−2u − h ∆p(1 + u 2 α/2i αu 2(1 + u 2) (2−α)/2 = k(u), x ∈ R N, where p-Laplace operator ∆pu = div(|∇u| p−2∇u) (1 < p ≤ N) and α ≥ 1 is a parameter. Under some appropriate assumptions on the potentia...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Wei Yunfeng
Chen Caisheng
Yang Hongwei
Yu Hongwang
Dokumentumtípus: Folyóirat
Megjelent: 2020
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Schrödinger egyenlet, Differenciálegyenlet, Laplace-operátor
doi:10.14232/ejqtde.2020.1.41

Online Access:http://acta.bibl.u-szeged.hu/70154
LEADER 01420nas a2200229 i 4500
001 acta70154
005 20211020135208.0
008 201201s2020 hu o 0|| zxx d
022 |a 1417-3875 
024 7 |a 10.14232/ejqtde.2020.1.41  |2 doi 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a zxx 
100 1 |a Wei Yunfeng 
245 1 0 |a Existence of weak solutions for quasilinear Schrödinger equations with a parameter  |h [elektronikus dokumentum] /  |c  Wei Yunfeng 
260 |c 2020 
490 0 |a Electronic journal of qualitative theory of differential equations 
520 3 |a In this paper, we study the following quasilinear Schrödinger equation of the form −∆pu + V(x)|u| p−2u − h ∆p(1 + u 2 α/2i αu 2(1 + u 2) (2−α)/2 = k(u), x ∈ R N, where p-Laplace operator ∆pu = div(|∇u| p−2∇u) (1 < p ≤ N) and α ≥ 1 is a parameter. Under some appropriate assumptions on the potential V and the nonlinear term k, using some special techniques, we establish the existence of a nontrivial solution in C 1,β loc (RN) (0 < β < 1), we also show that the solution is in L ∞(RN) and decays to zero at infinity when 1 < p < N. 
695 |a Schrödinger egyenlet, Differenciálegyenlet, Laplace-operátor 
700 0 1 |a Chen Caisheng  |e aut 
700 0 1 |a Yang Hongwei  |e aut 
700 0 1 |a Yu Hongwang  |e aut 
856 4 0 |u http://acta.bibl.u-szeged.hu/70154/1/ejqtde_2020_041.pdf  |z Dokumentum-elérés