Existence of infinitely many radial nodal solutions for a Dirichlet problem involving mean curvature operator in Minkowski space

In this paper, we show the existence of infinitely many radial nodal solutions for the following Dirichlet problem involving mean curvature operator in Minkowski space −div � ∇y 1−|∇y| 2 = λh(y) + g(|x|, y) in B, y = 0 on ∂B, where B = {x ∈ RN : |x| < 1} is the unit ball in RN, N ≥ 1, λ ≥ 0 is a...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Xu Man
Ma Ruyun
Dokumentumtípus: Folyóirat
Megjelent: 2020
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Differenciálegyenlet
doi:10.14232/ejqtde.2020.1.27

Online Access:http://acta.bibl.u-szeged.hu/69531
LEADER 01358nas a2200205 i 4500
001 acta69531
005 20211020135208.0
008 200608s2020 hu o 0|| zxx d
022 |a 1417-3875 
024 7 |a 10.14232/ejqtde.2020.1.27  |2 doi 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a zxx 
100 1 |a Xu Man 
245 1 0 |a Existence of infinitely many radial nodal solutions for a Dirichlet problem involving mean curvature operator in Minkowski space  |h [elektronikus dokumentum] /  |c  Xu Man 
260 |c 2020 
490 0 |a Electronic journal of qualitative theory of differential equations 
520 3 |a In this paper, we show the existence of infinitely many radial nodal solutions for the following Dirichlet problem involving mean curvature operator in Minkowski space −div � ∇y 1−|∇y| 2 = λh(y) + g(|x|, y) in B, y = 0 on ∂B, where B = {x ∈ RN : |x| < 1} is the unit ball in RN, N ≥ 1, λ ≥ 0 is a parameter, h ∈ C(R) and g ∈ C(R+ × R). By bifurcation and topological methods, we prove the problem possesses infinitely many component of radial solutions branching off at λ = 0 from the trivial solution, each component being characterized by nodal properties. 
695 |a Differenciálegyenlet 
700 0 1 |a Ma Ruyun  |e aut 
856 4 0 |u http://acta.bibl.u-szeged.hu/69531/1/ejqtde_2020_027.pdf  |z Dokumentum-elérés