Existence of infinitely many radial nodal solutions for a Dirichlet problem involving mean curvature operator in Minkowski space

In this paper, we show the existence of infinitely many radial nodal solutions for the following Dirichlet problem involving mean curvature operator in Minkowski space −div � ∇y 1−|∇y| 2 = λh(y) + g(|x|, y) in B, y = 0 on ∂B, where B = {x ∈ RN : |x| < 1} is the unit ball in RN, N ≥ 1, λ ≥ 0 is a...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Xu Man
Ma Ruyun
Dokumentumtípus: Folyóirat
Megjelent: 2020
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Differenciálegyenlet
doi:10.14232/ejqtde.2020.1.27

Online Access:http://acta.bibl.u-szeged.hu/69531
Leíró adatok
Tartalmi kivonat:In this paper, we show the existence of infinitely many radial nodal solutions for the following Dirichlet problem involving mean curvature operator in Minkowski space −div � ∇y 1−|∇y| 2 = λh(y) + g(|x|, y) in B, y = 0 on ∂B, where B = {x ∈ RN : |x| < 1} is the unit ball in RN, N ≥ 1, λ ≥ 0 is a parameter, h ∈ C(R) and g ∈ C(R+ × R). By bifurcation and topological methods, we prove the problem possesses infinitely many component of radial solutions branching off at λ = 0 from the trivial solution, each component being characterized by nodal properties.
ISSN:1417-3875