Antisymmetric solutions for a class of quasilinear defocusing Schrödinger equations

In this paper we consider the existence of antisymmetric solutions for the quasilinear defocusing Schrödinger equation in H1 (RN): −∆u + k 2 u∆u 2 + V(x)u = g(u), where N ≥ 3, V(x) is a positive continuous potential, g(u) is of subcritical growth and k is a non-negative parameter. By considering a m...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Soares Gamboa Janette
Zhou Jiazheng
Dokumentumtípus: Folyóirat
Megjelent: 2020
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Schrödinger-egyenlet, Differenciálegyenlet
doi:10.14232/ejqtde.2020.1.16

Online Access:http://acta.bibl.u-szeged.hu/69520
LEADER 01230nas a2200205 i 4500
001 acta69520
005 20211020135207.0
008 200608s2020 hu o 0|| zxx d
022 |a 1417-3875 
024 7 |a 10.14232/ejqtde.2020.1.16  |2 doi 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a zxx 
100 2 |a Soares Gamboa Janette 
245 1 0 |a Antisymmetric solutions for a class of quasilinear defocusing Schrödinger equations  |h [elektronikus dokumentum] /  |c  Soares Gamboa Janette 
260 |c 2020 
490 0 |a Electronic journal of qualitative theory of differential equations 
520 3 |a In this paper we consider the existence of antisymmetric solutions for the quasilinear defocusing Schrödinger equation in H1 (RN): −∆u + k 2 u∆u 2 + V(x)u = g(u), where N ≥ 3, V(x) is a positive continuous potential, g(u) is of subcritical growth and k is a non-negative parameter. By considering a minimizing problem restricted on a partial Nehari manifold, we prove the existence of antisymmetric solutions via a deformation lemma. 
695 |a Schrödinger-egyenlet, Differenciálegyenlet 
700 0 1 |a Zhou Jiazheng  |e aut 
856 4 0 |u http://acta.bibl.u-szeged.hu/69520/1/ejqtde_2020_016.pdf  |z Dokumentum-elérés