Antisymmetric solutions for a class of quasilinear defocusing Schrödinger equations
In this paper we consider the existence of antisymmetric solutions for the quasilinear defocusing Schrödinger equation in H1 (RN): −∆u + k 2 u∆u 2 + V(x)u = g(u), where N ≥ 3, V(x) is a positive continuous potential, g(u) is of subcritical growth and k is a non-negative parameter. By considering a m...
Elmentve itt :
Szerzők: | |
---|---|
Dokumentumtípus: | Folyóirat |
Megjelent: |
2020
|
Sorozat: | Electronic journal of qualitative theory of differential equations
|
Kulcsszavak: | Schrödinger-egyenlet, Differenciálegyenlet |
doi: | 10.14232/ejqtde.2020.1.16 |
Online Access: | http://acta.bibl.u-szeged.hu/69520 |
LEADER | 01230nas a2200205 i 4500 | ||
---|---|---|---|
001 | acta69520 | ||
005 | 20211020135207.0 | ||
008 | 200608s2020 hu o 0|| zxx d | ||
022 | |a 1417-3875 | ||
024 | 7 | |a 10.14232/ejqtde.2020.1.16 |2 doi | |
040 | |a SZTE Egyetemi Kiadványok Repozitórium |b hun | ||
041 | |a zxx | ||
100 | 2 | |a Soares Gamboa Janette | |
245 | 1 | 0 | |a Antisymmetric solutions for a class of quasilinear defocusing Schrödinger equations |h [elektronikus dokumentum] / |c Soares Gamboa Janette |
260 | |c 2020 | ||
490 | 0 | |a Electronic journal of qualitative theory of differential equations | |
520 | 3 | |a In this paper we consider the existence of antisymmetric solutions for the quasilinear defocusing Schrödinger equation in H1 (RN): −∆u + k 2 u∆u 2 + V(x)u = g(u), where N ≥ 3, V(x) is a positive continuous potential, g(u) is of subcritical growth and k is a non-negative parameter. By considering a minimizing problem restricted on a partial Nehari manifold, we prove the existence of antisymmetric solutions via a deformation lemma. | |
695 | |a Schrödinger-egyenlet, Differenciálegyenlet | ||
700 | 0 | 1 | |a Zhou Jiazheng |e aut |
856 | 4 | 0 | |u http://acta.bibl.u-szeged.hu/69520/1/ejqtde_2020_016.pdf |z Dokumentum-elérés |