On the divergence of double Fourier-Walsh-Paley series of continuous functions
In this paper we prove that there exists a continuous function on [0, 1)2 , with a certain smoothness, whose double Fourier–Walsh–Paley series diverges by rectangles on a set of positive measure.
Elmentve itt :
Szerző: | |
---|---|
Dokumentumtípus: | Cikk |
Megjelent: |
2020
|
Sorozat: | Acta scientiarum mathematicarum
|
Kulcsszavak: | Matematika |
Tárgyszavak: | |
doi: | 10.14232/actasm-019-319-0 |
Online Access: | http://acta.bibl.u-szeged.hu/69373 |
LEADER | 00968nab a2200229 i 4500 | ||
---|---|---|---|
001 | acta69373 | ||
005 | 20200727111016.0 | ||
008 | 200727s2020 hu o 0|| zxx d | ||
022 | |a 2064-8316 | ||
024 | 7 | |a 10.14232/actasm-019-319-0 |2 doi | |
040 | |a SZTE Egyetemi Kiadványok Repozitórium |b hun | ||
041 | |a zxx | ||
100 | 1 | |a Getsadze Rostom | |
245 | 1 | 3 | |a On the divergence of double Fourier-Walsh-Paley series of continuous functions |h [elektronikus dokumentum] / |c Getsadze Rostom |
260 | |c 2020 | ||
300 | |a 287-302 | ||
490 | 0 | |a Acta scientiarum mathematicarum | |
520 | 3 | |a In this paper we prove that there exists a continuous function on [0, 1)2 , with a certain smoothness, whose double Fourier–Walsh–Paley series diverges by rectangles on a set of positive measure. | |
650 | 4 | |a Természettudományok | |
650 | 4 | |a Matematika | |
695 | |a Matematika | ||
856 | 4 | 0 | |u http://acta.bibl.u-szeged.hu/69373/1/math_086_numb_001-002_287-302.pdf |z Dokumentum-elérés |