Computer-assisted existence proofs for one-dimensional Schrödinger-poisson systems

Motivated by the three-dimensional time-dependent Schr¨odinger-Poisson system we prove the existence of non-trivial solutions of the one-dimensional stationary Schr¨odinger-Poisson system using computer-assisted methods. Starting from a numerical approximate solution, we compute a bound for its defe...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Wunderlich Jonathan
Plum Michael
Testületi szerző: Summer Workshop on Interval Methods (11.) (2018) (Rostock)
Dokumentumtípus: Cikk
Megjelent: University of Szeged, Institute of Informatics Szeged 2020
Sorozat:Acta cybernetica 24 No. 3
Kulcsszavak:Számítástechnika, Kibernetika
Tárgyszavak:
doi:10.14232/actacyb.24.3.2020.6

Online Access:http://acta.bibl.u-szeged.hu/69282
LEADER 01936nab a2200253 i 4500
001 acta69282
005 20220621095536.0
008 200730s2020 hu o 0|| eng d
022 |a 0324-721X 
024 7 |a 10.14232/actacyb.24.3.2020.6  |2 doi 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a eng 
100 1 |a Wunderlich Jonathan 
245 1 0 |a Computer-assisted existence proofs for one-dimensional Schrödinger-poisson systems  |h [elektronikus dokumentum] /  |c  Wunderlich Jonathan 
260 |a University of Szeged, Institute of Informatics  |b Szeged  |c 2020 
300 |a 373-391 
490 0 |a Acta cybernetica  |v 24 No. 3 
520 3 |a Motivated by the three-dimensional time-dependent Schr¨odinger-Poisson system we prove the existence of non-trivial solutions of the one-dimensional stationary Schr¨odinger-Poisson system using computer-assisted methods. Starting from a numerical approximate solution, we compute a bound for its defect, and a norm bound for the inverse of the linearization at the approximate solution. For the latter, eigenvalue bounds play a crucial role, especially for the eigenvalues “close to” zero. Therefor, we use the Rayleigh-Ritz method and a corollary of the Temple-Lehmann Theorem to get enclosures of the crucial eigenvalues of the linearization below the essential spectrum. With these data in hand, we can use a fixed-point argument to obtain the desired existence of a non-trivial solution “nearby” the approximate one. In addition to the pure existence result, the used methods also provide an enclosure of the exact solution. 
650 4 |a Természettudományok 
650 4 |a Számítás- és információtudomány 
695 |a Számítástechnika, Kibernetika 
700 0 1 |a Plum Michael  |e aut 
710 |a Summer Workshop on Interval Methods (11.) (2018) (Rostock) 
856 4 0 |u http://acta.bibl.u-szeged.hu/69282/1/cybernetica_024_numb_003_373-391.pdf  |z Dokumentum-elérés