Computer-assisted existence proofs for one-dimensional Schrödinger-poisson systems

Motivated by the three-dimensional time-dependent Schr¨odinger-Poisson system we prove the existence of non-trivial solutions of the one-dimensional stationary Schr¨odinger-Poisson system using computer-assisted methods. Starting from a numerical approximate solution, we compute a bound for its defe...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Wunderlich Jonathan
Plum Michael
Testületi szerző: Summer Workshop on Interval Methods (11.) (2018) (Rostock)
Dokumentumtípus: Cikk
Megjelent: University of Szeged, Institute of Informatics Szeged 2020
Sorozat:Acta cybernetica 24 No. 3
Kulcsszavak:Számítástechnika, Kibernetika
Tárgyszavak:
doi:10.14232/actacyb.24.3.2020.6

Online Access:http://acta.bibl.u-szeged.hu/69282
Leíró adatok
Tartalmi kivonat:Motivated by the three-dimensional time-dependent Schr¨odinger-Poisson system we prove the existence of non-trivial solutions of the one-dimensional stationary Schr¨odinger-Poisson system using computer-assisted methods. Starting from a numerical approximate solution, we compute a bound for its defect, and a norm bound for the inverse of the linearization at the approximate solution. For the latter, eigenvalue bounds play a crucial role, especially for the eigenvalues “close to” zero. Therefor, we use the Rayleigh-Ritz method and a corollary of the Temple-Lehmann Theorem to get enclosures of the crucial eigenvalues of the linearization below the essential spectrum. With these data in hand, we can use a fixed-point argument to obtain the desired existence of a non-trivial solution “nearby” the approximate one. In addition to the pure existence result, the used methods also provide an enclosure of the exact solution.
Terjedelem/Fizikai jellemzők:373-391
ISSN:0324-721X