Positive solutions of a derivative dependent second-order problem subject to Stieltjes integral boundary conditions
In this paper, we investigate the derivative dependent second-order problem subject to Stieltjes integral boundary conditions −u 00(t) = f(t, u(t), u 0 (t)), t ∈ [0, 1], au(0) − bu0 (0) = α[u], cu(1) + du0 (1) = β[u], where f : [0, 1] × R+ × R → R+ is continuous, α[u] and β[u] are linear functionals...
Elmentve itt :
Szerzők: |
Ming Zhongyang Zhang Guowei Li Hongyu |
---|---|
Dokumentumtípus: | Folyóirat |
Megjelent: |
2019
|
Sorozat: | Electronic journal of qualitative theory of differential equations
|
Kulcsszavak: | Pozitív megoldás, Matematika |
doi: | 10.14232/ejqtde.2019.1.98 |
Online Access: | http://acta.bibl.u-szeged.hu/66365 |
Hasonló tételek
-
Positive solutions of second-order problem with dependence on derivative in nonlinearity under Stieltjes integral boundary condition
Szerző: Zhang Juan, et al.
Megjelent: (2018) -
Positive solutions for second-order differential equations with singularities and separated integral boundary conditions
Szerző: Zhang Yanlei, et al.
Megjelent: (2020) -
Positive solutions for second-order differential equations with singularities and separated integral boundary conditions
Szerző: Zhang Yanlei, et al.
Megjelent: (2020) -
Positive solutions for systems of second-order integral boundary value problems
Szerző: Henderson Johnny, et al.
Megjelent: (2013) -
Positive solutions of second-order three-point boundary value problems with sign-changing coefficients
Szerző: Xue Ye, et al.
Megjelent: (2016)