Essential spherical isometries

A theorem of Fillmore, Stampfli and Williams asserts that a bounded linear Hilbert space operator is an essential isometry if and only if it is a compact perturbation of either an isometry or a coisometry with finite-dimensional kernel. In this note, we discuss the spherical analog of this result. I...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerző: Chavan Shameer
Dokumentumtípus: Cikk
Megjelent: 2019
Sorozat:Acta scientiarum mathematicarum 85 No. 3-4
Kulcsszavak:Hilbert-tér, Fillmore, Stampfli és Williams tétel, izometria
doi:10.14232/actasm-018-335-6

Online Access:http://acta.bibl.u-szeged.hu/66334
LEADER 01443nab a2200205 i 4500
001 acta66334
005 20210325153448.0
008 200423s2019 hu o 0|| zxx d
022 |a 2064-8316 
024 7 |a 10.14232/actasm-018-335-6  |2 doi 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a zxx 
100 1 |a Chavan Shameer 
245 1 0 |a Essential spherical isometries  |h [elektronikus dokumentum] /  |c  Chavan Shameer 
260 |c 2019 
300 |a 589-594 
490 0 |a Acta scientiarum mathematicarum  |v 85 No. 3-4 
520 3 |a A theorem of Fillmore, Stampfli and Williams asserts that a bounded linear Hilbert space operator is an essential isometry if and only if it is a compact perturbation of either an isometry or a coisometry with finite-dimensional kernel. In this note, we discuss the spherical analog of this result. It turns out that the spherical analog of this result does not hold verbatim, and this failuremay be attributed to the fact that in dimension d>2, there exist spherical isometries with finite-dimensional joint cokernel, which are not essential spher-ical unitaries. We also discuss some strictly higher-dimensional obstructions in representing an essential spherical isometry as a compact perturbation of aspherical isometry. 
695 |a Hilbert-tér, Fillmore, Stampfli és Williams tétel, izometria 
856 4 0 |u http://acta.bibl.u-szeged.hu/66334/1/math_085_numb_003-004_589-594.pdf  |z Dokumentum-elérés