Automating, analyzing and improving pupillometry with machine learning algorithms

The investigation of the pupillary light reflex (PLR) is a well-known method to provide information about the functionality of the autonomic nervous system. Pupillometry, a non-invasive technique, was applied to study the PLR alterations in a new, schizophrenia-like rat substrain, named WISKET. The...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Kalmár György
Büki Alexandra
Kékesi Gabriella
Horváth Gyöngyi
Nyúl László G.
Dokumentumtípus: Cikk
Megjelent: 2019
Sorozat:Acta cybernetica 24 No. 2
Kulcsszavak:Pupillometria, Algoritmus
Tárgyszavak:
doi:10.14232/actacyb.24.2.2019.3

Online Access:http://acta.bibl.u-szeged.hu/64709
LEADER 02159nab a2200277 i 4500
001 acta64709
005 20220621090446.0
008 200317s2019 hu o 0|| eng d
022 |a 0324-721X 
024 7 |a 10.14232/actacyb.24.2.2019.3  |2 doi 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a eng 
100 1 |a Kalmár György 
245 1 0 |a Automating, analyzing and improving pupillometry with machine learning algorithms  |h [elektronikus dokumentum] /  |c  Kalmár György 
260 |c 2019 
300 |a 197-209 
490 0 |a Acta cybernetica  |v 24 No. 2 
520 3 |a The investigation of the pupillary light reflex (PLR) is a well-known method to provide information about the functionality of the autonomic nervous system. Pupillometry, a non-invasive technique, was applied to study the PLR alterations in a new, schizophrenia-like rat substrain, named WISKET. The pupil responses to light impulses were recorded with an infrared camera; the videos were automatically processed and features were extracted from the pupillograms. Besides the classical statistical analysis (ANOVA), feature selection and classification were applied to reveal the significant differences in the PLR parameters between the control and WISKET animals. Based on these results, the disadvantages of this method were analyzed and the measurement setup was redesigned and improved. The pupil segmentation method has also been adapted to the new videos. 2564 images were annotated manually and used to train a fully-convolutional neural network to produce pupil mask images. The method was evaluated on 329 test images and achieved 4% median relative error. With the new setup, the pupil detection became reliable and the new data acquisition offers robustness to the experiments. 
650 4 |a Természettudományok 
650 4 |a Számítás- és információtudomány 
695 |a Pupillometria, Algoritmus 
700 0 1 |a Büki Alexandra  |e aut 
700 0 1 |a Kékesi Gabriella  |e aut 
700 0 1 |a Horváth Gyöngyi  |e aut 
700 0 1 |a Nyúl László G.  |e aut 
856 4 0 |u http://acta.bibl.u-szeged.hu/64709/1/cybernetica_024_numb_002_197-209.pdf  |z Dokumentum-elérés