Maximal Lp-regularity for a second-order differential equation with unbounded intermediate coefficient
We consider the following equation −y 00 + r (x) y 0 + q (x) y = f(x), where the intermediate coefficient r is not controlled by q and it is can be strong oscillate. We give the conditions of well-posedness in Lp (−∞, +∞) of this equation. For the solution y, we obtained the following maximal regula...
Elmentve itt :
Szerző: | Ospanov Kordan Naurzykanovič |
---|---|
Dokumentumtípus: | Folyóirat |
Megjelent: |
2019
|
Sorozat: | Electronic journal of qualitative theory of differential equations
|
Kulcsszavak: | Másodrendű differenciálegyenlet |
doi: | 10.14232/ejqtde.2019.1.65 |
Online Access: | http://acta.bibl.u-szeged.hu/62289 |
Hasonló tételek
-
L1-maximal regularity for quasilinear second order differential equation with damped term
Szerző: Ospanov Kordan Naurzykanovič
Megjelent: (2015) -
Separation and the existence theorem for second order nonlinear differential equation
Szerző: Ospanov Kordan Naurzykanovič, et al.
Megjelent: (2012) -
Asymptotic representation of intermediate solutions to a cyclic systems of second-order difference equations with regularly varying coefficients
Szerző: Kapešić Aleksandra B.
Megjelent: (2018) -
New oscillation criteria for third-order differential equations with bounded and unbounded neutral coefficients
Szerző: Tunç Ercan, et al.
Megjelent: (2021) -
On small solutions of second order linear differential equations with non-monotonous random coefficients
Szerző: Hatvani László
Megjelent: (2002)