Infinitely many solutions for 2k-th order BVP with parameters

In this paper we consider a special case of BVP for higher-order ODE, where, the linear part consists of only even-order derivatives and depends on a set of real parameters. Among many questions related to this problem we are especially interested in the specific one, namely to work out assumptions...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerző: Jurkiewicz Mariusz
Dokumentumtípus: Folyóirat
Megjelent: 2019
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Differenciálegyenlet - határérték probléma
doi:10.14232/ejqtde.2019.1.57

Online Access:http://acta.bibl.u-szeged.hu/62281
LEADER 01267nas a2200205 i 4500
001 acta62281
005 20210916104220.0
008 190930s2019 hu o 0|| zxx d
022 |a 1417-3875 
024 7 |a 10.14232/ejqtde.2019.1.57  |2 doi 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a zxx 
100 1 |a Jurkiewicz Mariusz 
245 1 0 |a Infinitely many solutions for 2k-th order BVP with parameters  |h [elektronikus dokumentum] /  |c  Jurkiewicz Mariusz 
260 |c 2019 
300 |a 1-12 
490 0 |a Electronic journal of qualitative theory of differential equations 
520 3 |a In this paper we consider a special case of BVP for higher-order ODE, where, the linear part consists of only even-order derivatives and depends on a set of real parameters. Among many questions related to this problem we are especially interested in the specific one, namely to work out assumptions which provide existence of infinitely many solutions. This task is dealt with by applying a combination of both topological and variational methods, including Chang’s version of the Morse theory in particular. 
695 |a Differenciálegyenlet - határérték probléma 
856 4 0 |u http://acta.bibl.u-szeged.hu/62281/1/ejqtde_2019_057_001_012.pdf  |z Dokumentum-elérés