Lyapunov regularity and triangularization for unbounded sequences

The notion of Lyapunov regularity for a dynamics with discrete time defined by a bounded sequence of matrices can be characterized in many ways, highlighting different aspects of this important property introduced by Lyapunov. In strong contrast to the case of bounded sequences, not all these proper...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Barreira Luis
Valls Claudia
Dokumentumtípus: Folyóirat
Megjelent: 2019
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Differenciálegyenlet
doi:10.14232/ejqtde.2019.1.53

Online Access:http://acta.bibl.u-szeged.hu/62277
LEADER 01459nas a2200217 i 4500
001 acta62277
005 20210916104208.0
008 190930s2019 hu o 0|| zxx d
022 |a 1417-3875 
024 7 |a 10.14232/ejqtde.2019.1.53  |2 doi 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a zxx 
100 1 |a Barreira Luis 
245 1 0 |a Lyapunov regularity and triangularization for unbounded sequences  |h [elektronikus dokumentum] /  |c  Barreira Luis 
260 |c 2019 
300 |a 1-31 
490 0 |a Electronic journal of qualitative theory of differential equations 
520 3 |a The notion of Lyapunov regularity for a dynamics with discrete time defined by a bounded sequence of matrices can be characterized in many ways, highlighting different aspects of this important property introduced by Lyapunov. In strong contrast to the case of bounded sequences, not all these properties are equivalent to regularity for unbounded sequences. We first show that certain properties remain equivalent for unbounded sequences of matrices. We then show that unlike for bounded sequences and, more generally, tempered sequences, certain properties related to the existence of limits for the Lyapunov exponents on the diagonal are no longer equivalent to regularity for unbounded sequences. 
695 |a Differenciálegyenlet 
700 0 1 |a Valls Claudia  |e aut 
856 4 0 |u http://acta.bibl.u-szeged.hu/62277/1/ejqtde_2019_053_001-031.pdf  |z Dokumentum-elérés