Ground state sign-changing solutions for Kirchhoff equations with logarithmic nonlinearity
In this paper, we study Kirchhoff equations with logarithmic nonlinearity: −(a + b R |∇u| 2 )∆u + V(x)u = |u| p−2u ln u 2 , in Ω, u = 0, on ∂Ω, where a, b > 0 are constants, 4 < p < 2 , Ω is a smooth bounded domain of R3 and V : Ω → R. Using constraint variational method, topological degree...
Elmentve itt :
Szerzők: |
Wen Lixi Xianhua Tang Chen Sitong |
---|---|
Dokumentumtípus: | Folyóirat |
Megjelent: |
2019
|
Sorozat: | Electronic journal of qualitative theory of differential equations
|
Kulcsszavak: | Kirchhoff, Differenciálegyenlet, Logaritmus |
doi: | 10.14232/ejqtde.2019.1.47 |
Online Access: | http://acta.bibl.u-szeged.hu/62271 |
Hasonló tételek
-
Ground state solutions for asymptotically periodic fractional Choquard equations
Szerző: Chen Sitong, et al.
Megjelent: (2019) -
Ground state sign-changing solutions and infinitely many solutions for fractional logarithmic Schrödinger equations in bounded domains
Szerző: Tong Yonghui, et al.
Megjelent: (2021) -
Ground state solutions for a quasilinear Kirchhoff type equation
Szerző: Liu Hongliang, et al.
Megjelent: (2016) -
Ground state sign-changing solutions for critical Choquard equations with steep well potential
Szerző: Li Yong-Yong, et al.
Megjelent: (2022) -
Ground state solutions for diffusion system with superlinear nonlinearity
Szerző: Luo Zhiming, et al.
Megjelent: (2015)