Graphical models, regression graphs, and recursive linear regression in a unified way

This versatile topic goes back to the inventions of Gauss, Markov, and Gibbs, whose ideas are incorporated in graphical models and regression graphs. Later, the geneticist S. Wright (1923–1934) and the philosopher and computer scientist J. Pearl (1986–1987) developed the tools, but their notation is...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Bolla Marianna
Abdelkhalek Fatma
Baranyi Máté
Dokumentumtípus: Cikk
Megjelent: 2019
Sorozat:Acta scientiarum mathematicarum 85 No. 1-2
Kulcsszavak:Regresszió - lineáris, Gráf, Matematika
doi:10.14232/actasm-018-331-4

Online Access:http://acta.bibl.u-szeged.hu/62132
LEADER 01361nab a2200229 i 4500
001 acta62132
005 20210325153053.0
008 190925s2019 hu o 0|| zxx d
022 |a 2064-8316 
024 7 |a 10.14232/actasm-018-331-4  |2 doi 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a zxx 
100 1 |a Bolla Marianna 
245 1 0 |a Graphical models, regression graphs, and recursive linear regression in a unified way  |h [elektronikus dokumentum] /  |c  Bolla Marianna 
260 |c 2019 
300 |a 9-57 
490 0 |a Acta scientiarum mathematicarum  |v 85 No. 1-2 
520 3 |a This versatile topic goes back to the inventions of Gauss, Markov, and Gibbs, whose ideas are incorporated in graphical models and regression graphs. Later, the geneticist S. Wright (1923–1934) and the philosopher and computer scientist J. Pearl (1986–1987) developed the tools, but their notation is too complicated to formulate the mathematical background. Here we mainly follow the up-to-date discussion of statisticians S. Lauritzen and N. Wermuth, and try to juxtapose the directed–undirected and discrete–continuous cases. 
695 |a Regresszió - lineáris, Gráf, Matematika 
700 0 1 |a Abdelkhalek Fatma  |e aut 
700 0 1 |a Baranyi Máté  |e aut 
856 4 0 |u http://acta.bibl.u-szeged.hu/62132/1/math_085_numb_001-002_009-057.pdf  |z Dokumentum-elérés