Positive solutions for a class of semipositone periodic boundary value problems via bifurcation theory

In this paper, we are concerned with the existence of positive solutions of nonlinear periodic boundary value problems like − u 00 + q(x)u = λ f(x, u), x ∈ (0, 2π), u(0) = u(2π), u 0 (0) = u 0 (2π), where q ∈ C([0, 2π], [0, ∞)) with q 6≡ 0, f ∈ C([0, 2π] × R+, R), λ > 0 is the bifurcation paramet...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: He Zhiqian
Ma Ruyun
Xu Man
Dokumentumtípus: Folyóirat
Megjelent: 2019
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Határérték probléma - differenciálegyenletek, Bifurkációelmélet
doi:10.14232/ejqtde.2019.1.29

Online Access:http://acta.bibl.u-szeged.hu/62107
Leíró adatok
Tartalmi kivonat:In this paper, we are concerned with the existence of positive solutions of nonlinear periodic boundary value problems like − u 00 + q(x)u = λ f(x, u), x ∈ (0, 2π), u(0) = u(2π), u 0 (0) = u 0 (2π), where q ∈ C([0, 2π], [0, ∞)) with q 6≡ 0, f ∈ C([0, 2π] × R+, R), λ > 0 is the bifurcation parameter. By using bifurcation theory, we deal with both asymptotically linear, superlinear as well as sublinear problems and show that there exists a global branch of solutions emanating from infinity. Furthermore, we proved that for λ near the bifurcation value, solutions of large norm are indeed positive.
Terjedelem/Fizikai jellemzők:1-15
ISSN:1417-3875