A two-point boundary value problem for third order asymptotically linear systems

We consider a third order system x 000 = f(x) with the two-point boundary conditions x(0) = 0, x 0 (0) = 0, x(1) = 0, where f(0) = 0 and the vector field f ∈ C 1 (Rn , Rn ) is asymptotically linear with the derivative at infinity f 0 (∞). We introduce an asymptotically linear vector field φ such tha...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Gritsans Armand
Sadyrbaev Felix
Dokumentumtípus: Folyóirat
Megjelent: 2019
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Határérték probléma - differenciálegyenletek
doi:10.14232/ejqtde.2019.1.28

Online Access:http://acta.bibl.u-szeged.hu/62106
LEADER 01810nas a2200217 i 4500
001 acta62106
005 20210916104219.0
008 190927s2019 hu o 0|| zxx d
022 |a 1417-3875 
024 7 |a 10.14232/ejqtde.2019.1.28  |2 doi 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a zxx 
100 1 |a Gritsans Armand 
245 1 2 |a A two-point boundary value problem for third order asymptotically linear systems  |h [elektronikus dokumentum] /  |c  Gritsans Armand 
260 |c 2019 
300 |a 1-24 
490 0 |a Electronic journal of qualitative theory of differential equations 
520 3 |a We consider a third order system x 000 = f(x) with the two-point boundary conditions x(0) = 0, x 0 (0) = 0, x(1) = 0, where f(0) = 0 and the vector field f ∈ C 1 (Rn , Rn ) is asymptotically linear with the derivative at infinity f 0 (∞). We introduce an asymptotically linear vector field φ such that its singular points (zeros) are in a oneto-one correspondence with the solutions of the boundary value problem. Using the vector field rotation theory, we prove that under the non-resonance conditions for the linearized problems at zero and infinity the indices of φ at zero and infinity can be expressed in the terms of the eigenvalues of the matrices f 0 (0) and f 0 (∞), respectively. This proof constitutes an essential part of our article. If these indices are different, then standard arguments of the vector field rotation theory ensure the existence of at least one nontrivial solution to the boundary value problem. At the end of the article we consider the consequences for the scalar case. 
695 |a Határérték probléma - differenciálegyenletek 
700 0 1 |a Sadyrbaev Felix  |e aut 
856 4 0 |u http://acta.bibl.u-szeged.hu/62106/1/ejqtde_2019_028.pdf  |z Dokumentum-elérés