Long short-term memory recurrent neural networks models to forecast the resource usage of MapReduce applications

The forecasting of the resource usage of MapReduce applications plays an important role in the operation of cloud infrastructure. In this paper, we apply long short-term memory recurrent neural networks to predict the resource usage of three representative MapReduce applications. The Results show th...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Li Yangyuan
Do Tien Van
Testületi szerző: Conference of PhD students in computer science (11.) (2018) (Szeged)
Dokumentumtípus: Könyv része
Megjelent: 2018
Sorozat:Conference of PhD Students in Computer Science 11
Kulcsszavak:MapReduce, Programozás, Számítástechnika
Online Access:http://acta.bibl.u-szeged.hu/61797
LEADER 01452naa a2200205 i 4500
001 acta61797
005 20221108101821.0
008 191104s2018 hu o 1|| zxx d
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a zxx 
100 1 |a Li Yangyuan 
245 1 0 |a Long short-term memory recurrent neural networks models to forecast the resource usage of MapReduce applications  |h [elektronikus dokumentum] /  |c  Li Yangyuan 
260 |c 2018 
300 |a 176-178 
490 0 |a Conference of PhD Students in Computer Science  |v 11 
520 3 |a The forecasting of the resource usage of MapReduce applications plays an important role in the operation of cloud infrastructure. In this paper, we apply long short-term memory recurrent neural networks to predict the resource usage of three representative MapReduce applications. The Results show that the Long Short-term Memory Recurrent Neural Networks models perform higher prediction accuracy than persistence ones. Predictions of other usage parameters show similar accuracy with persistence one. The improper configuration parameters of Long Short-term Memory Recurrent Neural Networks possibly result in few of worse prediction. 
695 |a MapReduce, Programozás, Számítástechnika 
700 0 1 |a Do Tien Van  |e aut 
710 |a Conference of PhD students in computer science (11.) (2018) (Szeged) 
856 4 0 |u http://acta.bibl.u-szeged.hu/61797/1/cscs_2018_189-191.pdf  |z Dokumentum-elérés